利用还原氧化石墨烯和ZrO2设计壳层结构,协同提高硅阳极的锂离子存储性能

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hui-Bin Jin, Ze-Hao Zhang, Pin Ma, Hai-Bo Li
{"title":"利用还原氧化石墨烯和ZrO2设计壳层结构,协同提高硅阳极的锂离子存储性能","authors":"Hui-Bin Jin,&nbsp;Ze-Hao Zhang,&nbsp;Pin Ma,&nbsp;Hai-Bo Li","doi":"10.1007/s12598-024-03138-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, the Si@reduced graphene oxide/ZrO<sub>2</sub> (Si@rGO/ZrO<sub>2</sub>) with the shelled structures is prepared for the high-capacity and stable lithium-ion batteries. The shelled structure not only significantly improves the electrical conductivity of the whole electrode, but also protects the inner Si nanoparticles (Si NPs) from rupturing and being damaged by undesired side reactions with the electrolyte. As a result, the Si@rGO/ZrO<sub>2</sub> anode delivers high initial discharge capacity of 3046 mAh·g<sup>−1</sup> at 1.0 A·g<sup>−1</sup>. After 100 cycles, it can be maintained at 613 mAh·g<sup>−1</sup>, which is much higher than that of either the pure Si NPs (31 mAh·g<sup>−1</sup>) or the Si@rGO (261 mAh·g<sup>−1</sup>). Even at 2 A·g<sup>−1</sup>, it still provides superior specific capacity of 834 mAh·g<sup>−1</sup>, while the pure Si anode merely possesses the capacity of 41 mAh·g<sup>−1</sup>. Moreover, the density functional theory calculations point out that ZrO<sub>2</sub> layer can effectively enhance the adsorption energy of Li<sup>+</sup> and optimize the migration paths of Li<sup>+</sup>, ensuring the electrochemical performance of Si@rGO/ZrO<sub>2</sub> composite anode. Furthermore, the Li<sup>+</sup> storage mechanism and low volume expansion of Si@rGO/ZrO<sub>2</sub> anode is investigated by ex-situ X-ray photoelectron spectroscopy and morphological evolution upon cycling, respectively.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 4","pages":"2393 - 2404"},"PeriodicalIF":9.6000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergically enhancing lithium-ion storage performance of silicon anode by designing shelled structure with reduced graphene oxide and ZrO2\",\"authors\":\"Hui-Bin Jin,&nbsp;Ze-Hao Zhang,&nbsp;Pin Ma,&nbsp;Hai-Bo Li\",\"doi\":\"10.1007/s12598-024-03138-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, the Si@reduced graphene oxide/ZrO<sub>2</sub> (Si@rGO/ZrO<sub>2</sub>) with the shelled structures is prepared for the high-capacity and stable lithium-ion batteries. The shelled structure not only significantly improves the electrical conductivity of the whole electrode, but also protects the inner Si nanoparticles (Si NPs) from rupturing and being damaged by undesired side reactions with the electrolyte. As a result, the Si@rGO/ZrO<sub>2</sub> anode delivers high initial discharge capacity of 3046 mAh·g<sup>−1</sup> at 1.0 A·g<sup>−1</sup>. After 100 cycles, it can be maintained at 613 mAh·g<sup>−1</sup>, which is much higher than that of either the pure Si NPs (31 mAh·g<sup>−1</sup>) or the Si@rGO (261 mAh·g<sup>−1</sup>). Even at 2 A·g<sup>−1</sup>, it still provides superior specific capacity of 834 mAh·g<sup>−1</sup>, while the pure Si anode merely possesses the capacity of 41 mAh·g<sup>−1</sup>. Moreover, the density functional theory calculations point out that ZrO<sub>2</sub> layer can effectively enhance the adsorption energy of Li<sup>+</sup> and optimize the migration paths of Li<sup>+</sup>, ensuring the electrochemical performance of Si@rGO/ZrO<sub>2</sub> composite anode. Furthermore, the Li<sup>+</sup> storage mechanism and low volume expansion of Si@rGO/ZrO<sub>2</sub> anode is investigated by ex-situ X-ray photoelectron spectroscopy and morphological evolution upon cycling, respectively.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":749,\"journal\":{\"name\":\"Rare Metals\",\"volume\":\"44 4\",\"pages\":\"2393 - 2404\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12598-024-03138-1\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-03138-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文制备了具有壳化结构的Si@reduced氧化石墨烯/ZrO2 (Si@rGO/ZrO2),用于高容量、稳定的锂离子电池。这种壳结构不仅显著提高了整个电极的导电性,而且还保护了内部的Si纳米颗粒(Si NPs)不因与电解质的不良副反应而破裂和损坏。因此,Si@rGO/ZrO2阳极在1.0 a·g−1时提供了3046 mAh·g−1的高初始放电容量。经过100次循环后,它可以维持在613 mAh·g−1,远高于纯Si NPs (31 mAh·g−1)或Si@rGO (261 mAh·g−1)。即使在2 A·g−1时,它仍然具有834 mAh·g−1的优越比容量,而纯Si阳极仅具有41 mAh·g−1的容量。此外,密度泛函理论计算指出,ZrO2层可以有效提高Li+的吸附能,优化Li+的迁移路径,保证Si@rGO/ZrO2复合阳极的电化学性能。此外,通过x射线光电子能谱和循环后的形态演变研究了Si@rGO/ZrO2阳极Li+的储存机理和低体积膨胀。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergically enhancing lithium-ion storage performance of silicon anode by designing shelled structure with reduced graphene oxide and ZrO2

In this work, the Si@reduced graphene oxide/ZrO2 (Si@rGO/ZrO2) with the shelled structures is prepared for the high-capacity and stable lithium-ion batteries. The shelled structure not only significantly improves the electrical conductivity of the whole electrode, but also protects the inner Si nanoparticles (Si NPs) from rupturing and being damaged by undesired side reactions with the electrolyte. As a result, the Si@rGO/ZrO2 anode delivers high initial discharge capacity of 3046 mAh·g−1 at 1.0 A·g−1. After 100 cycles, it can be maintained at 613 mAh·g−1, which is much higher than that of either the pure Si NPs (31 mAh·g−1) or the Si@rGO (261 mAh·g−1). Even at 2 A·g−1, it still provides superior specific capacity of 834 mAh·g−1, while the pure Si anode merely possesses the capacity of 41 mAh·g−1. Moreover, the density functional theory calculations point out that ZrO2 layer can effectively enhance the adsorption energy of Li+ and optimize the migration paths of Li+, ensuring the electrochemical performance of Si@rGO/ZrO2 composite anode. Furthermore, the Li+ storage mechanism and low volume expansion of Si@rGO/ZrO2 anode is investigated by ex-situ X-ray photoelectron spectroscopy and morphological evolution upon cycling, respectively.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信