经典物理与量子物理在Aharonov-Bohm偏转方向上的矛盾

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Timothy H. Boyer
{"title":"经典物理与量子物理在Aharonov-Bohm偏转方向上的矛盾","authors":"Timothy H. Boyer","doi":"10.1007/s10701-025-00840-7","DOIUrl":null,"url":null,"abstract":"<div><p>Although the <i>magnitude</i> of the shift in the double-slit interference pattern when two electron beams pass outside a long solenoid has been confirmed in beautiful experiments, the direction of the deflection does not seem to appear in the published literature. It is claimed that careful quantum analysis gives a deflection direction opposite from that given by a classical electrodynamic analysis. Here we give a <i>classical</i> analysis of the interaction, and emphasize that the angle of deflection does not involve Planck’s constant. It is again suggested that a classical lag effect of order <span>\\(1/c^{2}\\)</span> forms the basis for the observed shift in the particle interference pattern. The effect is claimed to be the analogue of a nonrelativistic electric effect, and the analogous magnetic and electric <i>forces</i> are given for the two different situations. The magnetic interaction is considered in two different inertial frames where different electromagnetic fields are involved. An optical analogy is also mentioned. Finally, we note that electromagnetic fluctuations might wash out the lag effect for macroscopic solenoids.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"55 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contradiction Between Classical and Quantum Physics for the Aharonov–Bohm Deflection Direction\",\"authors\":\"Timothy H. Boyer\",\"doi\":\"10.1007/s10701-025-00840-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Although the <i>magnitude</i> of the shift in the double-slit interference pattern when two electron beams pass outside a long solenoid has been confirmed in beautiful experiments, the direction of the deflection does not seem to appear in the published literature. It is claimed that careful quantum analysis gives a deflection direction opposite from that given by a classical electrodynamic analysis. Here we give a <i>classical</i> analysis of the interaction, and emphasize that the angle of deflection does not involve Planck’s constant. It is again suggested that a classical lag effect of order <span>\\\\(1/c^{2}\\\\)</span> forms the basis for the observed shift in the particle interference pattern. The effect is claimed to be the analogue of a nonrelativistic electric effect, and the analogous magnetic and electric <i>forces</i> are given for the two different situations. The magnetic interaction is considered in two different inertial frames where different electromagnetic fields are involved. An optical analogy is also mentioned. Finally, we note that electromagnetic fluctuations might wash out the lag effect for macroscopic solenoids.</p></div>\",\"PeriodicalId\":569,\"journal\":{\"name\":\"Foundations of Physics\",\"volume\":\"55 2\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10701-025-00840-7\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10701-025-00840-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

虽然在漂亮的实验中已经证实了两束电子束通过长螺线管时双缝干涉图样的位移幅度,但在已发表的文献中似乎没有出现偏转的方向。有人声称,仔细的量子分析给出了与经典电动力学分析相反的偏转方向。这里我们给出了相互作用的经典分析,并强调偏转角不涉及普朗克常数。这再次表明,阶\(1/c^{2}\)的经典滞后效应形成了观测到的粒子干涉图样位移的基础。该效应被称为非相对论性电效应的类似物,并给出了两种不同情况下的类似磁力和电力。在涉及不同电磁场的两个不同惯性系中考虑磁相互作用。光学类比也被提及。最后,我们注意到电磁波动可能会消除宏观螺线管的滞后效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contradiction Between Classical and Quantum Physics for the Aharonov–Bohm Deflection Direction

Although the magnitude of the shift in the double-slit interference pattern when two electron beams pass outside a long solenoid has been confirmed in beautiful experiments, the direction of the deflection does not seem to appear in the published literature. It is claimed that careful quantum analysis gives a deflection direction opposite from that given by a classical electrodynamic analysis. Here we give a classical analysis of the interaction, and emphasize that the angle of deflection does not involve Planck’s constant. It is again suggested that a classical lag effect of order \(1/c^{2}\) forms the basis for the observed shift in the particle interference pattern. The effect is claimed to be the analogue of a nonrelativistic electric effect, and the analogous magnetic and electric forces are given for the two different situations. The magnetic interaction is considered in two different inertial frames where different electromagnetic fields are involved. An optical analogy is also mentioned. Finally, we note that electromagnetic fluctuations might wash out the lag effect for macroscopic solenoids.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Foundations of Physics
Foundations of Physics 物理-物理:综合
CiteScore
2.70
自引率
6.70%
发文量
104
审稿时长
6-12 weeks
期刊介绍: The conceptual foundations of physics have been under constant revision from the outset, and remain so today. Discussion of foundational issues has always been a major source of progress in science, on a par with empirical knowledge and mathematics. Examples include the debates on the nature of space and time involving Newton and later Einstein; on the nature of heat and of energy; on irreversibility and probability due to Boltzmann; on the nature of matter and observation measurement during the early days of quantum theory; on the meaning of renormalisation, and many others. Today, insightful reflection on the conceptual structure utilised in our efforts to understand the physical world is of particular value, given the serious unsolved problems that are likely to demand, once again, modifications of the grammar of our scientific description of the physical world. The quantum properties of gravity, the nature of measurement in quantum mechanics, the primary source of irreversibility, the role of information in physics – all these are examples of questions about which science is still confused and whose solution may well demand more than skilled mathematics and new experiments. Foundations of Physics is a privileged forum for discussing such foundational issues, open to physicists, cosmologists, philosophers and mathematicians. It is devoted to the conceptual bases of the fundamental theories of physics and cosmology, to their logical, methodological, and philosophical premises. The journal welcomes papers on issues such as the foundations of special and general relativity, quantum theory, classical and quantum field theory, quantum gravity, unified theories, thermodynamics, statistical mechanics, cosmology, and similar.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信