{"title":"内电极熔体静电纺丝法及纤维细化研究","authors":"Qi Xia, Chunming Wang, Bowen Yang, Minghang Li, Wenwen Han, Hongbo Chen","doi":"10.1007/s12221-025-00897-1","DOIUrl":null,"url":null,"abstract":"<div><p>Melt electrospinning technology, as a green and efficient fiber manufacturing method, has shown great potential in various fields. However, the viscosity characteristics of the melt make fiber refinement challenging, which has become a major bottleneck for melt electrospinning technology. To further reduce fiber diameter and improve fiber efficiency, this study thoroughly analyzes the effects of melt temperature, auxiliary airflow, and nozzle structure on fiber properties. Additionally, a new melt differential electrospinning technology with an internal electrode structure is proposed. By introducing point electrodes, the electric field strength is enhanced, thus achieving both efficiency improvement and fiber refinement. Experimental results show that appropriately increasing the melt temperature can enhance both efficiency and fiber refinement. The fiber diameter significantly decreases with the increase of auxiliary airflow, although this method does not improve fiber efficiency. The internal electrode structure can increase the amount of fiber while refining the fiber diameter. The internal/external conical nozzle structures are suitable for efficiency improvement and fiber refinement, respectively.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"26 4","pages":"1519 - 1528"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the Melt Electrospinning Method with Internal Electrode and Fiber Refinement\",\"authors\":\"Qi Xia, Chunming Wang, Bowen Yang, Minghang Li, Wenwen Han, Hongbo Chen\",\"doi\":\"10.1007/s12221-025-00897-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Melt electrospinning technology, as a green and efficient fiber manufacturing method, has shown great potential in various fields. However, the viscosity characteristics of the melt make fiber refinement challenging, which has become a major bottleneck for melt electrospinning technology. To further reduce fiber diameter and improve fiber efficiency, this study thoroughly analyzes the effects of melt temperature, auxiliary airflow, and nozzle structure on fiber properties. Additionally, a new melt differential electrospinning technology with an internal electrode structure is proposed. By introducing point electrodes, the electric field strength is enhanced, thus achieving both efficiency improvement and fiber refinement. Experimental results show that appropriately increasing the melt temperature can enhance both efficiency and fiber refinement. The fiber diameter significantly decreases with the increase of auxiliary airflow, although this method does not improve fiber efficiency. The internal electrode structure can increase the amount of fiber while refining the fiber diameter. The internal/external conical nozzle structures are suitable for efficiency improvement and fiber refinement, respectively.</p></div>\",\"PeriodicalId\":557,\"journal\":{\"name\":\"Fibers and Polymers\",\"volume\":\"26 4\",\"pages\":\"1519 - 1528\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fibers and Polymers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12221-025-00897-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-025-00897-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
Study on the Melt Electrospinning Method with Internal Electrode and Fiber Refinement
Melt electrospinning technology, as a green and efficient fiber manufacturing method, has shown great potential in various fields. However, the viscosity characteristics of the melt make fiber refinement challenging, which has become a major bottleneck for melt electrospinning technology. To further reduce fiber diameter and improve fiber efficiency, this study thoroughly analyzes the effects of melt temperature, auxiliary airflow, and nozzle structure on fiber properties. Additionally, a new melt differential electrospinning technology with an internal electrode structure is proposed. By introducing point electrodes, the electric field strength is enhanced, thus achieving both efficiency improvement and fiber refinement. Experimental results show that appropriately increasing the melt temperature can enhance both efficiency and fiber refinement. The fiber diameter significantly decreases with the increase of auxiliary airflow, although this method does not improve fiber efficiency. The internal electrode structure can increase the amount of fiber while refining the fiber diameter. The internal/external conical nozzle structures are suitable for efficiency improvement and fiber refinement, respectively.
期刊介绍:
-Chemistry of Fiber Materials, Polymer Reactions and Synthesis-
Physical Properties of Fibers, Polymer Blends and Composites-
Fiber Spinning and Textile Processing, Polymer Physics, Morphology-
Colorants and Dyeing, Polymer Analysis and Characterization-
Chemical Aftertreatment of Textiles, Polymer Processing and Rheology-
Textile and Apparel Science, Functional Polymers