Lan Ma , Xinyan Li , Guilan Zhang , Yin Zhang , Haoxi Dong , Junjie Liao , Rui Han , Liyun Zhang
{"title":"用于整体水分解的超疏氧b掺杂珊瑚状分层纳米阵列电极","authors":"Lan Ma , Xinyan Li , Guilan Zhang , Yin Zhang , Haoxi Dong , Junjie Liao , Rui Han , Liyun Zhang","doi":"10.1016/j.ijhydene.2025.04.045","DOIUrl":null,"url":null,"abstract":"<div><div>The rational design of highly active, non-precious electrocatalysts for overall water splitting is crucial for large-scale hydrogen production. Herein, a coral-like B-doping hierarchical nanoarray(B–FeCoNi-LDH@NF) with two-dimensional metal boride nanoflakes growing on FeCoNi LDH nanowires are constructed by boronation induced surface reconfiguration strategy. The introduction of B-doping generates abundant oxygen vacancies and crystalline-amorphous phase interfaces, creating a three-dimensional hierarchical nanoarray structure with superaerophobic properties. The optimized B<sub>10</sub>–FeCoNi-LDH@NF electrode exhibits exceptional electrocatalytic performance, achieving low overpotentials for hydrogen evolution (56 mV at 10 mA cm<sup>−2</sup>) and oxygen evolution (169 mV at 10 mA cm<sup>−2</sup>). An alkali-water electrolyzer using B<sub>10</sub>–FeCoNi-LDH as both cathode and anode delivers a low voltage of 1.54 V at 10 mA cm<sup>−2</sup>. DFT calculations show B-doping modulates Fe, Co, and Ni active sites, lowering the energy barrier for HER and OER rate-determining steps. This work provides a strategy for designing high-performance, non-precious multifunctional electrodes for water splitting.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"124 ","pages":"Pages 251-262"},"PeriodicalIF":8.3000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Super-aerophobic B-doped coral-like hierarchical nanoarray electrode for overall water splitting\",\"authors\":\"Lan Ma , Xinyan Li , Guilan Zhang , Yin Zhang , Haoxi Dong , Junjie Liao , Rui Han , Liyun Zhang\",\"doi\":\"10.1016/j.ijhydene.2025.04.045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rational design of highly active, non-precious electrocatalysts for overall water splitting is crucial for large-scale hydrogen production. Herein, a coral-like B-doping hierarchical nanoarray(B–FeCoNi-LDH@NF) with two-dimensional metal boride nanoflakes growing on FeCoNi LDH nanowires are constructed by boronation induced surface reconfiguration strategy. The introduction of B-doping generates abundant oxygen vacancies and crystalline-amorphous phase interfaces, creating a three-dimensional hierarchical nanoarray structure with superaerophobic properties. The optimized B<sub>10</sub>–FeCoNi-LDH@NF electrode exhibits exceptional electrocatalytic performance, achieving low overpotentials for hydrogen evolution (56 mV at 10 mA cm<sup>−2</sup>) and oxygen evolution (169 mV at 10 mA cm<sup>−2</sup>). An alkali-water electrolyzer using B<sub>10</sub>–FeCoNi-LDH as both cathode and anode delivers a low voltage of 1.54 V at 10 mA cm<sup>−2</sup>. DFT calculations show B-doping modulates Fe, Co, and Ni active sites, lowering the energy barrier for HER and OER rate-determining steps. This work provides a strategy for designing high-performance, non-precious multifunctional electrodes for water splitting.</div></div>\",\"PeriodicalId\":337,\"journal\":{\"name\":\"International Journal of Hydrogen Energy\",\"volume\":\"124 \",\"pages\":\"Pages 251-262\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hydrogen Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360319925016611\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319925016611","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
合理设计高活性、非贵重的全水分解电催化剂对大规模制氢至关重要。本文采用硼化诱导表面重配置策略,在FeCoNi LDH纳米线上构建了具有二维金属硼化物纳米片的类珊瑚B掺杂层次化纳米阵列(B - FeCoNi-LDH@NF)。b掺杂的引入产生了丰富的氧空位和结晶-非晶相界面,形成了具有超疏氧性能的三维分层纳米阵列结构。优化后的B10 - FeCoNi-LDH@NF电极表现出优异的电催化性能,具有低过电位析氢(在10 mA cm−2时为56 mV)和析氧(在10 mA cm−2时为169 mV)。使用b10 - fecni - ldh作为阴极和阳极的碱-水电解槽在10 mA cm - 2下提供1.54 V的低电压。DFT计算表明,b掺杂调节了Fe、Co和Ni活性位点,降低了HER和OER速率决定步骤的能量势垒。这项工作为设计高性能、非贵重的多功能水分解电极提供了一种策略。
Super-aerophobic B-doped coral-like hierarchical nanoarray electrode for overall water splitting
The rational design of highly active, non-precious electrocatalysts for overall water splitting is crucial for large-scale hydrogen production. Herein, a coral-like B-doping hierarchical nanoarray(B–FeCoNi-LDH@NF) with two-dimensional metal boride nanoflakes growing on FeCoNi LDH nanowires are constructed by boronation induced surface reconfiguration strategy. The introduction of B-doping generates abundant oxygen vacancies and crystalline-amorphous phase interfaces, creating a three-dimensional hierarchical nanoarray structure with superaerophobic properties. The optimized B10–FeCoNi-LDH@NF electrode exhibits exceptional electrocatalytic performance, achieving low overpotentials for hydrogen evolution (56 mV at 10 mA cm−2) and oxygen evolution (169 mV at 10 mA cm−2). An alkali-water electrolyzer using B10–FeCoNi-LDH as both cathode and anode delivers a low voltage of 1.54 V at 10 mA cm−2. DFT calculations show B-doping modulates Fe, Co, and Ni active sites, lowering the energy barrier for HER and OER rate-determining steps. This work provides a strategy for designing high-performance, non-precious multifunctional electrodes for water splitting.
期刊介绍:
The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc.
The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.