雷击后残余抗拉强度

IF 8.1 2区 材料科学 Q1 ENGINEERING, MANUFACTURING
X. Xu , S.L.J. Millen , D. Mitchard , M.R. Wisnom
{"title":"雷击后残余抗拉强度","authors":"X. Xu ,&nbsp;S.L.J. Millen ,&nbsp;D. Mitchard ,&nbsp;M.R. Wisnom","doi":"10.1016/j.compositesa.2025.108899","DOIUrl":null,"url":null,"abstract":"<div><div>The study of post lightning strike residual strength is still relatively underdeveloped in the literature. Different approaches including in-plane compression or flexural testing have been used, but in-plane tensile loading post-strike has not been studied in detail. Although previous attempts have been made to determine the residual strength using Compression-After-Lightning (CAL) tests on composite laminates, these have been limited and not readily applicable under tensile loads. Therefore, this work completes Tension-After-Lightning (TAL) testing at 75 kA on composite laminates, a more realistic peak current than previously reported for TAL tests, to assess the knock-down in strength post-strike. The measured average TAL failure stress was 716 MPa, a reduction of 23 % from the baseline tensile failure stress of 929 MPa in the literature. This confirms a similar knock-down factor reported at lower peak currents (e.g. 50 kA), but the new TAL specimen geometry ensures that the lightning damage is contained within both the lightning and TAL specimen widths. In addition, a new Finite Element (FE) based virtual test was conducted, considering 0° ply splitting, and validated with the TAL tests herein. The TAL simulation predicted the residual tensile failure stress well, within 6 % of the measured value.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":"194 ","pages":"Article 108899"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On residual tensile strength after lightning strikes\",\"authors\":\"X. Xu ,&nbsp;S.L.J. Millen ,&nbsp;D. Mitchard ,&nbsp;M.R. Wisnom\",\"doi\":\"10.1016/j.compositesa.2025.108899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The study of post lightning strike residual strength is still relatively underdeveloped in the literature. Different approaches including in-plane compression or flexural testing have been used, but in-plane tensile loading post-strike has not been studied in detail. Although previous attempts have been made to determine the residual strength using Compression-After-Lightning (CAL) tests on composite laminates, these have been limited and not readily applicable under tensile loads. Therefore, this work completes Tension-After-Lightning (TAL) testing at 75 kA on composite laminates, a more realistic peak current than previously reported for TAL tests, to assess the knock-down in strength post-strike. The measured average TAL failure stress was 716 MPa, a reduction of 23 % from the baseline tensile failure stress of 929 MPa in the literature. This confirms a similar knock-down factor reported at lower peak currents (e.g. 50 kA), but the new TAL specimen geometry ensures that the lightning damage is contained within both the lightning and TAL specimen widths. In addition, a new Finite Element (FE) based virtual test was conducted, considering 0° ply splitting, and validated with the TAL tests herein. The TAL simulation predicted the residual tensile failure stress well, within 6 % of the measured value.</div></div>\",\"PeriodicalId\":282,\"journal\":{\"name\":\"Composites Part A: Applied Science and Manufacturing\",\"volume\":\"194 \",\"pages\":\"Article 108899\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part A: Applied Science and Manufacturing\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359835X25001939\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X25001939","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

文献中对雷击后残余强度的研究还比较不发达。不同的方法,包括面内压缩或弯曲试验已被使用,但面内拉伸加载后的打击还没有详细的研究。虽然以前的尝试是通过对复合材料层压板进行雷电后压缩(CAL)测试来确定残余强度,但这些测试是有限的,并且不容易适用于拉伸载荷。因此,这项工作完成了在75 kA下对复合层压板进行的雷电后张力(TAL)测试,这是一个比以前报道的TAL测试更现实的峰值电流,以评估冲击后的强度。测量的平均TAL破坏应力为716 MPa,比文献中基线拉伸破坏应力929 MPa降低了23%。这证实了在较低峰值电流(例如50 kA)下报告的类似击倒因子,但新的TAL试样几何形状确保闪电损伤包含在闪电和TAL试样宽度内。在此基础上,提出了一种考虑0°层裂的基于有限元的虚拟试验方法,并与TAL试验进行了验证。TAL模拟很好地预测了残余拉伸破坏应力,在测量值的6%以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On residual tensile strength after lightning strikes
The study of post lightning strike residual strength is still relatively underdeveloped in the literature. Different approaches including in-plane compression or flexural testing have been used, but in-plane tensile loading post-strike has not been studied in detail. Although previous attempts have been made to determine the residual strength using Compression-After-Lightning (CAL) tests on composite laminates, these have been limited and not readily applicable under tensile loads. Therefore, this work completes Tension-After-Lightning (TAL) testing at 75 kA on composite laminates, a more realistic peak current than previously reported for TAL tests, to assess the knock-down in strength post-strike. The measured average TAL failure stress was 716 MPa, a reduction of 23 % from the baseline tensile failure stress of 929 MPa in the literature. This confirms a similar knock-down factor reported at lower peak currents (e.g. 50 kA), but the new TAL specimen geometry ensures that the lightning damage is contained within both the lightning and TAL specimen widths. In addition, a new Finite Element (FE) based virtual test was conducted, considering 0° ply splitting, and validated with the TAL tests herein. The TAL simulation predicted the residual tensile failure stress well, within 6 % of the measured value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Part A: Applied Science and Manufacturing
Composites Part A: Applied Science and Manufacturing 工程技术-材料科学:复合
CiteScore
15.20
自引率
5.70%
发文量
492
审稿时长
30 days
期刊介绍: Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信