Clare Burnett , Georg Graninger , Zana Eren , Brian G. Falzon , Zafer Kazancı
{"title":"碳纤维增强3d打印聚合物的拉伸性能:打印参数的影响","authors":"Clare Burnett , Georg Graninger , Zana Eren , Brian G. Falzon , Zafer Kazancı","doi":"10.1016/j.engfailanal.2025.109577","DOIUrl":null,"url":null,"abstract":"<div><div>The mechanical performance of fibre-reinforced 3D-printed composites is highly dependent on slicing and processing parameters, yet a systematic understanding of these effects remains limited. This study aims to systematically evaluate the influence of infill pattern, infill density, bed orientation, and layer thickness on the tensile properties of short carbon fibre-reinforced Nylon (Onyx) and unreinforced Nylon fabricated using Markforged 3D printers. Tensile testing was conducted to assess tensile modulus, ultimate tensile strength, elongation at break, and Poisson’s ratio across varying slicing parameters. Various raster angles (0°, 90°, 45° and −45° relative to the x-axis), three infill patterns (rectangular, triangular, hexagonal), and multiple densities (17 %–92 %) were examined to assess their influence on mechanical behaviour. Scanning electron microscopy (SEM) and fibre volume fraction ignition testing were used to quantify void content and fibre distribution in Onyx composites. Furthermore, the Rule of Mixtures (ROM) was applied and demonstrated strong agreement with experimental results, providing a predictive framework for tensile performance across different infill densities. The findings of this study contribute to the optimisation of fibre-reinforced additive manufacturing by identifying key parameters that enhance mechanical properties, supporting structural applications in aerospace, automotive, and lightweight engineering systems.</div></div>","PeriodicalId":11677,"journal":{"name":"Engineering Failure Analysis","volume":"175 ","pages":"Article 109577"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tensile performance of carbon fibre-reinforced 3D-printed polymers: Effect of printing parameters\",\"authors\":\"Clare Burnett , Georg Graninger , Zana Eren , Brian G. Falzon , Zafer Kazancı\",\"doi\":\"10.1016/j.engfailanal.2025.109577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The mechanical performance of fibre-reinforced 3D-printed composites is highly dependent on slicing and processing parameters, yet a systematic understanding of these effects remains limited. This study aims to systematically evaluate the influence of infill pattern, infill density, bed orientation, and layer thickness on the tensile properties of short carbon fibre-reinforced Nylon (Onyx) and unreinforced Nylon fabricated using Markforged 3D printers. Tensile testing was conducted to assess tensile modulus, ultimate tensile strength, elongation at break, and Poisson’s ratio across varying slicing parameters. Various raster angles (0°, 90°, 45° and −45° relative to the x-axis), three infill patterns (rectangular, triangular, hexagonal), and multiple densities (17 %–92 %) were examined to assess their influence on mechanical behaviour. Scanning electron microscopy (SEM) and fibre volume fraction ignition testing were used to quantify void content and fibre distribution in Onyx composites. Furthermore, the Rule of Mixtures (ROM) was applied and demonstrated strong agreement with experimental results, providing a predictive framework for tensile performance across different infill densities. The findings of this study contribute to the optimisation of fibre-reinforced additive manufacturing by identifying key parameters that enhance mechanical properties, supporting structural applications in aerospace, automotive, and lightweight engineering systems.</div></div>\",\"PeriodicalId\":11677,\"journal\":{\"name\":\"Engineering Failure Analysis\",\"volume\":\"175 \",\"pages\":\"Article 109577\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Failure Analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350630725003188\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Failure Analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350630725003188","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Tensile performance of carbon fibre-reinforced 3D-printed polymers: Effect of printing parameters
The mechanical performance of fibre-reinforced 3D-printed composites is highly dependent on slicing and processing parameters, yet a systematic understanding of these effects remains limited. This study aims to systematically evaluate the influence of infill pattern, infill density, bed orientation, and layer thickness on the tensile properties of short carbon fibre-reinforced Nylon (Onyx) and unreinforced Nylon fabricated using Markforged 3D printers. Tensile testing was conducted to assess tensile modulus, ultimate tensile strength, elongation at break, and Poisson’s ratio across varying slicing parameters. Various raster angles (0°, 90°, 45° and −45° relative to the x-axis), three infill patterns (rectangular, triangular, hexagonal), and multiple densities (17 %–92 %) were examined to assess their influence on mechanical behaviour. Scanning electron microscopy (SEM) and fibre volume fraction ignition testing were used to quantify void content and fibre distribution in Onyx composites. Furthermore, the Rule of Mixtures (ROM) was applied and demonstrated strong agreement with experimental results, providing a predictive framework for tensile performance across different infill densities. The findings of this study contribute to the optimisation of fibre-reinforced additive manufacturing by identifying key parameters that enhance mechanical properties, supporting structural applications in aerospace, automotive, and lightweight engineering systems.
期刊介绍:
Engineering Failure Analysis publishes research papers describing the analysis of engineering failures and related studies.
Papers relating to the structure, properties and behaviour of engineering materials are encouraged, particularly those which also involve the detailed application of materials parameters to problems in engineering structures, components and design. In addition to the area of materials engineering, the interacting fields of mechanical, manufacturing, aeronautical, civil, chemical, corrosion and design engineering are considered relevant. Activity should be directed at analysing engineering failures and carrying out research to help reduce the incidences of failures and to extend the operating horizons of engineering materials.
Emphasis is placed on the mechanical properties of materials and their behaviour when influenced by structure, process and environment. Metallic, polymeric, ceramic and natural materials are all included and the application of these materials to real engineering situations should be emphasised. The use of a case-study based approach is also encouraged.
Engineering Failure Analysis provides essential reference material and critical feedback into the design process thereby contributing to the prevention of engineering failures in the future. All submissions will be subject to peer review from leading experts in the field.