用于电极功函数调谐的电子活性自组装单层膜的表面反应

IF 9.6 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ricardo Ruvalcaba, Zhongzhe Liu, Mohamad Insan Nugraha, George Harrison, Yu-Ying Yang, Marco Thaler, Adam V. Marsh, Matthias Zeilerbauer, Chrysa Aivalioti, Raul Ricardo Aguileta-Vazquez, Leonidas Tsetseris, Laerte L. Patera, Percy Zahl, Martin Heeney*, Thomas D. Anthopoulos* and Shadi Fatayer*, 
{"title":"用于电极功函数调谐的电子活性自组装单层膜的表面反应","authors":"Ricardo Ruvalcaba,&nbsp;Zhongzhe Liu,&nbsp;Mohamad Insan Nugraha,&nbsp;George Harrison,&nbsp;Yu-Ying Yang,&nbsp;Marco Thaler,&nbsp;Adam V. Marsh,&nbsp;Matthias Zeilerbauer,&nbsp;Chrysa Aivalioti,&nbsp;Raul Ricardo Aguileta-Vazquez,&nbsp;Leonidas Tsetseris,&nbsp;Laerte L. Patera,&nbsp;Percy Zahl,&nbsp;Martin Heeney*,&nbsp;Thomas D. Anthopoulos* and Shadi Fatayer*,&nbsp;","doi":"10.1021/acsmaterialslett.4c0226710.1021/acsmaterialslett.4c02267","DOIUrl":null,"url":null,"abstract":"<p >Self-assembled monolayers (SAMs) help improve the performance of organic electronic devices through interface passivation and enhanced carrier transport. Yet, there is limited information regarding the chemical structure of the SAMs upon functionalization and subsequent thermal treatment. Here, we studied the on-surface reaction of carbazole-derived SAMs on model gold electrodes, focusing on the chemical structure changes induced by thermal treatments. Furthermore, we correlate the microscopic changes with their impact on the electrode’s work function. The carbazole-based SAMs first transform into organometallic complexes. At higher annealing temperatures, SAMs convert to oligomeric complexes. The observed chemical reactions significantly reduce the electrode work function and facilitate electron injection in n-type organic thin-film transistors. Our results highlight the on-surface synthesis of electronically active SAMs as an alternative approach for modifying the work function of electrodes for organic electronics.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"7 4","pages":"1421–1430 1421–1430"},"PeriodicalIF":9.6000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialslett.4c02267","citationCount":"0","resultStr":"{\"title\":\"On-Surface Reactions of Electronically Active Self-Assembled Monolayers for Electrode Work Function Tuning\",\"authors\":\"Ricardo Ruvalcaba,&nbsp;Zhongzhe Liu,&nbsp;Mohamad Insan Nugraha,&nbsp;George Harrison,&nbsp;Yu-Ying Yang,&nbsp;Marco Thaler,&nbsp;Adam V. Marsh,&nbsp;Matthias Zeilerbauer,&nbsp;Chrysa Aivalioti,&nbsp;Raul Ricardo Aguileta-Vazquez,&nbsp;Leonidas Tsetseris,&nbsp;Laerte L. Patera,&nbsp;Percy Zahl,&nbsp;Martin Heeney*,&nbsp;Thomas D. Anthopoulos* and Shadi Fatayer*,&nbsp;\",\"doi\":\"10.1021/acsmaterialslett.4c0226710.1021/acsmaterialslett.4c02267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Self-assembled monolayers (SAMs) help improve the performance of organic electronic devices through interface passivation and enhanced carrier transport. Yet, there is limited information regarding the chemical structure of the SAMs upon functionalization and subsequent thermal treatment. Here, we studied the on-surface reaction of carbazole-derived SAMs on model gold electrodes, focusing on the chemical structure changes induced by thermal treatments. Furthermore, we correlate the microscopic changes with their impact on the electrode’s work function. The carbazole-based SAMs first transform into organometallic complexes. At higher annealing temperatures, SAMs convert to oligomeric complexes. The observed chemical reactions significantly reduce the electrode work function and facilitate electron injection in n-type organic thin-film transistors. Our results highlight the on-surface synthesis of electronically active SAMs as an alternative approach for modifying the work function of electrodes for organic electronics.</p>\",\"PeriodicalId\":19,\"journal\":{\"name\":\"ACS Materials Letters\",\"volume\":\"7 4\",\"pages\":\"1421–1430 1421–1430\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialslett.4c02267\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c02267\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c02267","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

自组装单层膜(SAMs)通过界面钝化和增强载流子输运,有助于提高有机电子器件的性能。然而,关于功能化和后续热处理后的地对空导弹的化学结构的信息有限。在此,我们研究了咔唑衍生的sam在模型金电极上的表面反应,重点研究了热处理引起的化学结构变化。此外,我们将微观变化与它们对电极功函数的影响联系起来。以咔唑为基础的sam首先转化为有机金属配合物。在较高的退火温度下,sam转化为低聚物。观察到的化学反应显著降低了n型有机薄膜晶体管的电极功函数,促进了电子注入。我们的研究结果强调了表面合成电子活性SAMs作为修改有机电子学电极功函数的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On-Surface Reactions of Electronically Active Self-Assembled Monolayers for Electrode Work Function Tuning

Self-assembled monolayers (SAMs) help improve the performance of organic electronic devices through interface passivation and enhanced carrier transport. Yet, there is limited information regarding the chemical structure of the SAMs upon functionalization and subsequent thermal treatment. Here, we studied the on-surface reaction of carbazole-derived SAMs on model gold electrodes, focusing on the chemical structure changes induced by thermal treatments. Furthermore, we correlate the microscopic changes with their impact on the electrode’s work function. The carbazole-based SAMs first transform into organometallic complexes. At higher annealing temperatures, SAMs convert to oligomeric complexes. The observed chemical reactions significantly reduce the electrode work function and facilitate electron injection in n-type organic thin-film transistors. Our results highlight the on-surface synthesis of electronically active SAMs as an alternative approach for modifying the work function of electrodes for organic electronics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Materials Letters
ACS Materials Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.60
自引率
3.50%
发文量
261
期刊介绍: ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信