限制空间电荷驱动CO2捕集的超微孔甲酰基四羧酸钾框架的快速合成

IF 9.6 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Li-Qiu Yang, Jia Yu, Jun-Ting Lv, Chen-Chen Xing, Ying Wang, Wen-Yu Yuan and Quan-Guo Zhai*, 
{"title":"限制空间电荷驱动CO2捕集的超微孔甲酰基四羧酸钾框架的快速合成","authors":"Li-Qiu Yang,&nbsp;Jia Yu,&nbsp;Jun-Ting Lv,&nbsp;Chen-Chen Xing,&nbsp;Ying Wang,&nbsp;Wen-Yu Yuan and Quan-Guo Zhai*,&nbsp;","doi":"10.1021/acsmaterialslett.4c0250410.1021/acsmaterialslett.4c02504","DOIUrl":null,"url":null,"abstract":"<p >Upgrading and optimizing carbon capture technology and materials may significantly enhance the development of industry. Herein, a specific confined-space-charge-driving CO<sub>2</sub> capture strategy is pioneered in a MOF adsorbent, SNNU-117, an anionic potassium-pyrenetetracarboxylate complex obtained via a simple, mild, rapid, and scalable salting-out method. As expected, the regularly shaped ultramicropores (about 3.6 Å) comparable to those of CO<sub>2</sub> molecules effectively restrict gas molecule reorientation, while the multiple active protons on the pore surface provide a positive electrostatic potential for polarized oxygen in CO<sub>2</sub> molecules. Such synergy between pore size and electrostatic potential clearly promotes the CO<sub>2</sub> adsorption and separation performance. Under 298 K, 1 bar, SNNU-117 exhibits high affinity for CO<sub>2</sub> with exceptional IAST selectivity of CO<sub>2</sub>/C<sub>2</sub>H<sub>2</sub> (2744), CO<sub>2</sub>/N<sub>2</sub> (6.3 × 10<sup>4</sup>), and CO<sub>2</sub>/CH<sub>4</sub> (5.6 × 10<sup>6</sup>) surpassing nearly all MOF adsorbents. Density functional theory (DFT) calculation, Grand Canonical Monte Carlo (GCMC) simulation, and dynamic breakthrough experiments further support the specific confined-space-charge-driving CO<sub>2</sub> capture ability of SNNU-117.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"7 4","pages":"1203–1210 1203–1210"},"PeriodicalIF":9.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid Synthesis of Ultramicroporous Potassium-Pyrenetetracarboxylate Framework with Confined-Space-Charge-Driving CO2 Capture\",\"authors\":\"Li-Qiu Yang,&nbsp;Jia Yu,&nbsp;Jun-Ting Lv,&nbsp;Chen-Chen Xing,&nbsp;Ying Wang,&nbsp;Wen-Yu Yuan and Quan-Guo Zhai*,&nbsp;\",\"doi\":\"10.1021/acsmaterialslett.4c0250410.1021/acsmaterialslett.4c02504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Upgrading and optimizing carbon capture technology and materials may significantly enhance the development of industry. Herein, a specific confined-space-charge-driving CO<sub>2</sub> capture strategy is pioneered in a MOF adsorbent, SNNU-117, an anionic potassium-pyrenetetracarboxylate complex obtained via a simple, mild, rapid, and scalable salting-out method. As expected, the regularly shaped ultramicropores (about 3.6 Å) comparable to those of CO<sub>2</sub> molecules effectively restrict gas molecule reorientation, while the multiple active protons on the pore surface provide a positive electrostatic potential for polarized oxygen in CO<sub>2</sub> molecules. Such synergy between pore size and electrostatic potential clearly promotes the CO<sub>2</sub> adsorption and separation performance. Under 298 K, 1 bar, SNNU-117 exhibits high affinity for CO<sub>2</sub> with exceptional IAST selectivity of CO<sub>2</sub>/C<sub>2</sub>H<sub>2</sub> (2744), CO<sub>2</sub>/N<sub>2</sub> (6.3 × 10<sup>4</sup>), and CO<sub>2</sub>/CH<sub>4</sub> (5.6 × 10<sup>6</sup>) surpassing nearly all MOF adsorbents. Density functional theory (DFT) calculation, Grand Canonical Monte Carlo (GCMC) simulation, and dynamic breakthrough experiments further support the specific confined-space-charge-driving CO<sub>2</sub> capture ability of SNNU-117.</p>\",\"PeriodicalId\":19,\"journal\":{\"name\":\"ACS Materials Letters\",\"volume\":\"7 4\",\"pages\":\"1203–1210 1203–1210\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c02504\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c02504","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

升级和优化碳捕集技术和材料可以显著促进产业发展。在此,一种特定的限制空间电荷驱动的CO2捕获策略在MOF吸附剂SNNU-117中被首创,SNNU-117是一种阴离子钾-芘四羧酸盐配合物,通过简单、温和、快速和可扩展的盐析方法获得。正如预期的那样,与CO2分子相当的规则形状的超微孔(约3.6 Å)有效地限制了气体分子的重新定向,而孔表面的多个活性质子为CO2分子中的极化氧提供了正静电电位。这种孔径和静电势的协同作用明显促进了CO2的吸附和分离性能。在298 K, 1 bar的条件下,SNNU-117对CO2具有很高的亲和力,其对CO2/C2H2 (2744), CO2/N2 (6.3 × 104)和CO2/CH4 (5.6 × 106)的选择性优于几乎所有的MOF吸附剂。密度泛函理论(DFT)计算、大正则蒙特卡罗(GCMC)模拟和动态突破实验进一步支持了SNNU-117特定的限制空间电荷驱动CO2捕获能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rapid Synthesis of Ultramicroporous Potassium-Pyrenetetracarboxylate Framework with Confined-Space-Charge-Driving CO2 Capture

Rapid Synthesis of Ultramicroporous Potassium-Pyrenetetracarboxylate Framework with Confined-Space-Charge-Driving CO2 Capture

Upgrading and optimizing carbon capture technology and materials may significantly enhance the development of industry. Herein, a specific confined-space-charge-driving CO2 capture strategy is pioneered in a MOF adsorbent, SNNU-117, an anionic potassium-pyrenetetracarboxylate complex obtained via a simple, mild, rapid, and scalable salting-out method. As expected, the regularly shaped ultramicropores (about 3.6 Å) comparable to those of CO2 molecules effectively restrict gas molecule reorientation, while the multiple active protons on the pore surface provide a positive electrostatic potential for polarized oxygen in CO2 molecules. Such synergy between pore size and electrostatic potential clearly promotes the CO2 adsorption and separation performance. Under 298 K, 1 bar, SNNU-117 exhibits high affinity for CO2 with exceptional IAST selectivity of CO2/C2H2 (2744), CO2/N2 (6.3 × 104), and CO2/CH4 (5.6 × 106) surpassing nearly all MOF adsorbents. Density functional theory (DFT) calculation, Grand Canonical Monte Carlo (GCMC) simulation, and dynamic breakthrough experiments further support the specific confined-space-charge-driving CO2 capture ability of SNNU-117.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Materials Letters
ACS Materials Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.60
自引率
3.50%
发文量
261
期刊介绍: ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信