富勒烯和单壁碳纳米管弯曲碳前体的sp2-sp3杂化碳

IF 9.6 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Di Jin, Xinyang Li, Shicong Ding and Guochun Yang*, 
{"title":"富勒烯和单壁碳纳米管弯曲碳前体的sp2-sp3杂化碳","authors":"Di Jin,&nbsp;Xinyang Li,&nbsp;Shicong Ding and Guochun Yang*,&nbsp;","doi":"10.1021/acsmaterialslett.4c0226410.1021/acsmaterialslett.4c02264","DOIUrl":null,"url":null,"abstract":"<p ><i>sp</i><sup>2</sup>-<i>sp</i><sup>3</sup> hybridized carbons have garnered attention for their diverse configurations and tunable properties. However, the atomic-level transformation mechanism, particularly the precursor configurations and the six-membered (6-M) ring ratio, remains not fully understood. This study investigated the phase transformations of fullerenes (C<sub>20</sub>, C<sub>60</sub>, C<sub>70</sub>) and single-walled carbon nanotubes (SWCNTs) into <i>sp</i><sup>2</sup>-<i>sp</i><sup>3</sup> hybridized carbon using molecular dynamics simulations. Fullerenes transform into amorphous carbon, while SWCNTs evolve into graphite-diamond hybrids with a semicoherent interface. Temperature controls product type, and pressure modulates <i>sp</i><sup>3</sup>/<i>sp</i><sup>2</sup> ratio. A higher 6-M rings ratio in fullerene precursors increases the structural order manifested by graphite and diamond-like characteristics. A “pinning effect” caused by edge dislocations in SWCNTs facilitates the semicoherent interface formation by increasing the interlayer spacing and altering the stacking order of graphite. The proposed <i>sp</i><sup>2</sup>-<i>sp</i><sup>3</sup> hybridized carbons demonstrate tunable mechanical properties. This study advances our understanding of the atomic-level mechanism underlying <i>sp</i><sup>2</sup>-<i>sp</i><sup>3</sup> hybridized carbon transformations and their potential applications.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"7 4","pages":"1179–1186 1179–1186"},"PeriodicalIF":9.6000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"sp2-sp3 Hybridized Carbons from Curved Carbon Precursors of Fullerenes and Single-Walled Carbon Nanotubes\",\"authors\":\"Di Jin,&nbsp;Xinyang Li,&nbsp;Shicong Ding and Guochun Yang*,&nbsp;\",\"doi\":\"10.1021/acsmaterialslett.4c0226410.1021/acsmaterialslett.4c02264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p ><i>sp</i><sup>2</sup>-<i>sp</i><sup>3</sup> hybridized carbons have garnered attention for their diverse configurations and tunable properties. However, the atomic-level transformation mechanism, particularly the precursor configurations and the six-membered (6-M) ring ratio, remains not fully understood. This study investigated the phase transformations of fullerenes (C<sub>20</sub>, C<sub>60</sub>, C<sub>70</sub>) and single-walled carbon nanotubes (SWCNTs) into <i>sp</i><sup>2</sup>-<i>sp</i><sup>3</sup> hybridized carbon using molecular dynamics simulations. Fullerenes transform into amorphous carbon, while SWCNTs evolve into graphite-diamond hybrids with a semicoherent interface. Temperature controls product type, and pressure modulates <i>sp</i><sup>3</sup>/<i>sp</i><sup>2</sup> ratio. A higher 6-M rings ratio in fullerene precursors increases the structural order manifested by graphite and diamond-like characteristics. A “pinning effect” caused by edge dislocations in SWCNTs facilitates the semicoherent interface formation by increasing the interlayer spacing and altering the stacking order of graphite. The proposed <i>sp</i><sup>2</sup>-<i>sp</i><sup>3</sup> hybridized carbons demonstrate tunable mechanical properties. This study advances our understanding of the atomic-level mechanism underlying <i>sp</i><sup>2</sup>-<i>sp</i><sup>3</sup> hybridized carbon transformations and their potential applications.</p>\",\"PeriodicalId\":19,\"journal\":{\"name\":\"ACS Materials Letters\",\"volume\":\"7 4\",\"pages\":\"1179–1186 1179–1186\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c02264\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c02264","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Sp2-sp3杂化碳以其多样的构型和可调的性质引起了人们的关注。然而,原子水平的转变机制,特别是前驱体构型和六元环比,仍然不完全清楚。本研究通过分子动力学模拟研究了富勒烯(C20、C60、C70)和单壁碳纳米管(SWCNTs)向sp2-sp3杂化碳的相变。富勒烯转变为无定形碳,而SWCNTs演变为具有半相干界面的石墨-金刚石杂化物。温度控制产品类型,压力调节sp3/sp2比。富勒烯前驱体中较高的6-M环比增加了结构的有序性,表现为石墨和类金刚石特征。SWCNTs中由边缘位错引起的“钉住效应”通过增加层间间距和改变石墨的堆叠顺序,促进了半相干界面的形成。提出的sp2-sp3杂化碳具有可调的力学性能。这项研究促进了我们对sp2-sp3杂化碳转化的原子水平机制及其潜在应用的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

sp2-sp3 Hybridized Carbons from Curved Carbon Precursors of Fullerenes and Single-Walled Carbon Nanotubes

sp2-sp3 Hybridized Carbons from Curved Carbon Precursors of Fullerenes and Single-Walled Carbon Nanotubes

sp2-sp3 hybridized carbons have garnered attention for their diverse configurations and tunable properties. However, the atomic-level transformation mechanism, particularly the precursor configurations and the six-membered (6-M) ring ratio, remains not fully understood. This study investigated the phase transformations of fullerenes (C20, C60, C70) and single-walled carbon nanotubes (SWCNTs) into sp2-sp3 hybridized carbon using molecular dynamics simulations. Fullerenes transform into amorphous carbon, while SWCNTs evolve into graphite-diamond hybrids with a semicoherent interface. Temperature controls product type, and pressure modulates sp3/sp2 ratio. A higher 6-M rings ratio in fullerene precursors increases the structural order manifested by graphite and diamond-like characteristics. A “pinning effect” caused by edge dislocations in SWCNTs facilitates the semicoherent interface formation by increasing the interlayer spacing and altering the stacking order of graphite. The proposed sp2-sp3 hybridized carbons demonstrate tunable mechanical properties. This study advances our understanding of the atomic-level mechanism underlying sp2-sp3 hybridized carbon transformations and their potential applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Materials Letters
ACS Materials Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.60
自引率
3.50%
发文量
261
期刊介绍: ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信