超微孔金属-有机框架内静电相互作用的重新配置使CO2分离成为可能

IF 9.6 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mingyuan Jiang, Jialang Hu, Yonggang Zhang, Yuhan Chen, Lvming Jin, Yuan Chen, Yuhan Lai, Rajamani Krishna, Peng Hu* and Hongbing Ji*, 
{"title":"超微孔金属-有机框架内静电相互作用的重新配置使CO2分离成为可能","authors":"Mingyuan Jiang,&nbsp;Jialang Hu,&nbsp;Yonggang Zhang,&nbsp;Yuhan Chen,&nbsp;Lvming Jin,&nbsp;Yuan Chen,&nbsp;Yuhan Lai,&nbsp;Rajamani Krishna,&nbsp;Peng Hu* and Hongbing Ji*,&nbsp;","doi":"10.1021/acsmaterialslett.4c0255110.1021/acsmaterialslett.4c02551","DOIUrl":null,"url":null,"abstract":"<p >Developing highly efficient adsorbents for CO<sub>2</sub> separation is significant in solving environmental challenges, but the trade-off between regenerability and selectivity undoubtedly limits their practical applications. Here, an ultramicroporous zinc metal–organic framework (Zn-MOF, termed as <b>1a</b>) with decent CO<sub>2</sub>-affinity pore cavities is synthesized to enhance electrostatic interactions between CO<sub>2</sub> and the pore surface for efficient CO<sub>2</sub> purification from CO<sub>2</sub>/N<sub>2</sub> and CO<sub>2</sub>/CH<sub>4</sub> binary gas mixtures, in which the reconfiguration of electrostatic interactions within the <b>1a</b> leads to a lower desorption temperature and high regenerability. Single-component gas adsorption isotherms indicate that <b>1a</b> possesses a higher CO<sub>2</sub> capacity of 33.7/62.1 cm<sup>3</sup> g<sup>–1</sup> (0.1/1 bar) at 298 K. Theoretical calculations suggest that the framework is electrostatically compatible with CO<sub>2</sub> and can boost CO<sub>2</sub> separation through multiple electrostatic interactions. Further, highly efficient separations of CO<sub>2</sub>/CH<sub>4</sub> and CO<sub>2</sub>/N<sub>2</sub> have been achieved and verified by column breakthrough tests.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"7 4","pages":"1242–1249 1242–1249"},"PeriodicalIF":9.6000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconfiguration of Electrostatic Interactions within an Ultramicroporous Metal–Organic Framework Enables CO2 Separation\",\"authors\":\"Mingyuan Jiang,&nbsp;Jialang Hu,&nbsp;Yonggang Zhang,&nbsp;Yuhan Chen,&nbsp;Lvming Jin,&nbsp;Yuan Chen,&nbsp;Yuhan Lai,&nbsp;Rajamani Krishna,&nbsp;Peng Hu* and Hongbing Ji*,&nbsp;\",\"doi\":\"10.1021/acsmaterialslett.4c0255110.1021/acsmaterialslett.4c02551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Developing highly efficient adsorbents for CO<sub>2</sub> separation is significant in solving environmental challenges, but the trade-off between regenerability and selectivity undoubtedly limits their practical applications. Here, an ultramicroporous zinc metal–organic framework (Zn-MOF, termed as <b>1a</b>) with decent CO<sub>2</sub>-affinity pore cavities is synthesized to enhance electrostatic interactions between CO<sub>2</sub> and the pore surface for efficient CO<sub>2</sub> purification from CO<sub>2</sub>/N<sub>2</sub> and CO<sub>2</sub>/CH<sub>4</sub> binary gas mixtures, in which the reconfiguration of electrostatic interactions within the <b>1a</b> leads to a lower desorption temperature and high regenerability. Single-component gas adsorption isotherms indicate that <b>1a</b> possesses a higher CO<sub>2</sub> capacity of 33.7/62.1 cm<sup>3</sup> g<sup>–1</sup> (0.1/1 bar) at 298 K. Theoretical calculations suggest that the framework is electrostatically compatible with CO<sub>2</sub> and can boost CO<sub>2</sub> separation through multiple electrostatic interactions. Further, highly efficient separations of CO<sub>2</sub>/CH<sub>4</sub> and CO<sub>2</sub>/N<sub>2</sub> have been achieved and verified by column breakthrough tests.</p>\",\"PeriodicalId\":19,\"journal\":{\"name\":\"ACS Materials Letters\",\"volume\":\"7 4\",\"pages\":\"1242–1249 1242–1249\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c02551\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c02551","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发高效的CO2吸附剂对于解决环境问题具有重要意义,但在可再生性和选择性之间的权衡无疑限制了它们的实际应用。本文合成了一种具有良好的CO2亲和孔腔的超微孔锌金属有机骨架(Zn-MOF,称为1a),以增强CO2与孔表面之间的静电相互作用,从而有效地从CO2/N2和CO2/CH4二元气体混合物中净化CO2,其中1a内静电相互作用的重新配置导致较低的解吸温度和较高的可再生性。单组分气体吸附等温线表明,在298 K时,1a具有更高的CO2容量33.7/62.1 cm3 g-1 (0.1/1 bar)。理论计算表明,该框架与CO2具有静电兼容性,可以通过多重静电相互作用促进CO2的分离。此外,还实现了CO2/CH4和CO2/N2的高效分离,并通过柱突试验进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Reconfiguration of Electrostatic Interactions within an Ultramicroporous Metal–Organic Framework Enables CO2 Separation

Reconfiguration of Electrostatic Interactions within an Ultramicroporous Metal–Organic Framework Enables CO2 Separation

Developing highly efficient adsorbents for CO2 separation is significant in solving environmental challenges, but the trade-off between regenerability and selectivity undoubtedly limits their practical applications. Here, an ultramicroporous zinc metal–organic framework (Zn-MOF, termed as 1a) with decent CO2-affinity pore cavities is synthesized to enhance electrostatic interactions between CO2 and the pore surface for efficient CO2 purification from CO2/N2 and CO2/CH4 binary gas mixtures, in which the reconfiguration of electrostatic interactions within the 1a leads to a lower desorption temperature and high regenerability. Single-component gas adsorption isotherms indicate that 1a possesses a higher CO2 capacity of 33.7/62.1 cm3 g–1 (0.1/1 bar) at 298 K. Theoretical calculations suggest that the framework is electrostatically compatible with CO2 and can boost CO2 separation through multiple electrostatic interactions. Further, highly efficient separations of CO2/CH4 and CO2/N2 have been achieved and verified by column breakthrough tests.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Materials Letters
ACS Materials Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.60
自引率
3.50%
发文量
261
期刊介绍: ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信