基于非线性终身学习模型的污水处理厂病毒颗粒预测

IF 10.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Jianxu Chen, Ibrahima N’Doye, Yevhen Myshkevych, Fahad Aljehani, Mohammad Khalil Monjed, Taous-Meriem Laleg-Kirati, Pei-Ying Hong
{"title":"基于非线性终身学习模型的污水处理厂病毒颗粒预测","authors":"Jianxu Chen, Ibrahima N’Doye, Yevhen Myshkevych, Fahad Aljehani, Mohammad Khalil Monjed, Taous-Meriem Laleg-Kirati, Pei-Ying Hong","doi":"10.1038/s41545-025-00461-7","DOIUrl":null,"url":null,"abstract":"<p>Predicting new unseen data using only wastewater process inputs remains an open challenge. This paper proposes lifelong learning approaches that integrate long short-term memory (LSTM), gated recurrent unit (GRU) and tree-based machine learning models with knowledge-based dictionaries for real-time viral prediction across various wastewater treatment plants (WWTPs) in Saudi Arabia. Limited data prompted the use of a Wasserstein generative adversarial network to generate synthetic data from physicochemical parameters (e.g., pH, chemical oxygen demand, total dissolved solids, total suspended solids, turbidity, conductivity, NO<sub>2</sub>-N, NO<sub>3</sub>-N, NH<sub>4</sub>-N), virometry, and PCR-based methods. The input features and predictors are combined into a coupled dictionary learning framework, enabling knowledge transfer for new WWTP batches. We tested the framework for predicting total virus, adenovirus, and pepper mild mottle virus from WWTP stages, including conventional activated sludge, sand filter, and ultrafiltration effluents. The LSTM and GRU models adapted well to new data, maintaining robust performance. Tests on total viral prediction across four municipal WWTPs in Saudi Arabia showed the lifelong learning model’s value for adaptive viral particle prediction and performance enhancement.</p>","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":"73 1","pages":""},"PeriodicalIF":10.4000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Viral particle prediction in wastewater treatment plants using nonlinear lifelong learning models\",\"authors\":\"Jianxu Chen, Ibrahima N’Doye, Yevhen Myshkevych, Fahad Aljehani, Mohammad Khalil Monjed, Taous-Meriem Laleg-Kirati, Pei-Ying Hong\",\"doi\":\"10.1038/s41545-025-00461-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Predicting new unseen data using only wastewater process inputs remains an open challenge. This paper proposes lifelong learning approaches that integrate long short-term memory (LSTM), gated recurrent unit (GRU) and tree-based machine learning models with knowledge-based dictionaries for real-time viral prediction across various wastewater treatment plants (WWTPs) in Saudi Arabia. Limited data prompted the use of a Wasserstein generative adversarial network to generate synthetic data from physicochemical parameters (e.g., pH, chemical oxygen demand, total dissolved solids, total suspended solids, turbidity, conductivity, NO<sub>2</sub>-N, NO<sub>3</sub>-N, NH<sub>4</sub>-N), virometry, and PCR-based methods. The input features and predictors are combined into a coupled dictionary learning framework, enabling knowledge transfer for new WWTP batches. We tested the framework for predicting total virus, adenovirus, and pepper mild mottle virus from WWTP stages, including conventional activated sludge, sand filter, and ultrafiltration effluents. The LSTM and GRU models adapted well to new data, maintaining robust performance. Tests on total viral prediction across four municipal WWTPs in Saudi Arabia showed the lifelong learning model’s value for adaptive viral particle prediction and performance enhancement.</p>\",\"PeriodicalId\":19375,\"journal\":{\"name\":\"npj Clean Water\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2025-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Clean Water\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41545-025-00461-7\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41545-025-00461-7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

仅使用废水处理输入来预测新的未知数据仍然是一个悬而未决的挑战。本文提出了终身学习方法,将长短期记忆(LSTM)、门控循环单元(GRU)和基于树的机器学习模型与基于知识的字典相结合,用于沙特阿拉伯各种污水处理厂(WWTPs)的实时病毒预测。有限的数据促使使用Wasserstein生成对抗网络从物理化学参数(例如pH,化学需氧量,总溶解固体,总悬浮固体,浊度,电导率,NO2-N, NO3-N, NH4-N),病毒学和基于pcr的方法生成合成数据。输入特征和预测器被组合到一个耦合的字典学习框架中,支持新的WWTP批次的知识转移。我们测试了从污水处理阶段预测总病毒、腺病毒和辣椒轻度斑疹病毒的框架,包括常规活性污泥、砂滤和超滤出水。LSTM和GRU模型能很好地适应新数据,保持稳健的性能。对沙特阿拉伯四个城市污水处理厂的总病毒预测测试表明,终身学习模型在自适应病毒颗粒预测和性能增强方面具有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Viral particle prediction in wastewater treatment plants using nonlinear lifelong learning models

Viral particle prediction in wastewater treatment plants using nonlinear lifelong learning models

Predicting new unseen data using only wastewater process inputs remains an open challenge. This paper proposes lifelong learning approaches that integrate long short-term memory (LSTM), gated recurrent unit (GRU) and tree-based machine learning models with knowledge-based dictionaries for real-time viral prediction across various wastewater treatment plants (WWTPs) in Saudi Arabia. Limited data prompted the use of a Wasserstein generative adversarial network to generate synthetic data from physicochemical parameters (e.g., pH, chemical oxygen demand, total dissolved solids, total suspended solids, turbidity, conductivity, NO2-N, NO3-N, NH4-N), virometry, and PCR-based methods. The input features and predictors are combined into a coupled dictionary learning framework, enabling knowledge transfer for new WWTP batches. We tested the framework for predicting total virus, adenovirus, and pepper mild mottle virus from WWTP stages, including conventional activated sludge, sand filter, and ultrafiltration effluents. The LSTM and GRU models adapted well to new data, maintaining robust performance. Tests on total viral prediction across four municipal WWTPs in Saudi Arabia showed the lifelong learning model’s value for adaptive viral particle prediction and performance enhancement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Clean Water
npj Clean Water Environmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍: npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信