半离子型C-F优化了Rh/F, n共掺杂多孔碳的金属负载相互作用,以实现高效的全ph制氢

IF 17.1 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Jian Guo, Rui Ding, Yi Li, Yiqing Lu, Ziyang Yan, Zhiqiang Chen, Yuming He, Qingcheng Yang, Xinchang Guo, Yibo Zhang, Jiajie Luo
{"title":"半离子型C-F优化了Rh/F, n共掺杂多孔碳的金属负载相互作用,以实现高效的全ph制氢","authors":"Jian Guo,&nbsp;Rui Ding,&nbsp;Yi Li,&nbsp;Yiqing Lu,&nbsp;Ziyang Yan,&nbsp;Zhiqiang Chen,&nbsp;Yuming He,&nbsp;Qingcheng Yang,&nbsp;Xinchang Guo,&nbsp;Yibo Zhang,&nbsp;Jiajie Luo","doi":"10.1016/j.nanoen.2025.110975","DOIUrl":null,"url":null,"abstract":"<div><div>Designing efficient and robust Rh-based electrocatalysts with strong metal-support interaction for hydrogen evolution reaction (HER) across various pH conditions is of great significance and challenge. Herein, a hydrogel sealing-pyrolyzing-etching strategy is engineered to anchor ultrafine Rh nanoparticles (Rh NPs) on N-doped porous carbon (Rh/NPC), further introducing strong electronegativity F-dopants to strengthen the metal-support interaction for obtaining high electroactivity Rh NPs/ F, N-codoped porous carbon composite (Rh/FNPC) toward HER. The optimal 8Rh/FNPC renders ultralow overpotentials in 1 <sub>M</sub> KOH (η<sub>10</sub> = 12 mV), 0.5 <sub>M</sub> H<sub>2</sub>SO<sub>4</sub> (η<sub>10</sub> = 42 mV), and 1 <sub>M</sub> phosphate buffer solution (η<sub>10</sub> = 64 mV). Density functional theory (DFT) simulations unveil that the F dopants can optimize the adsorption free energies of reaction intermediates and accelerate the rate-determining steps on the Rh active site, thereby achieving high intrinsic activity and exceptional electroactivity of Rh/FNPC. This work affords new perspectives and avenues for constructing advanced catalysts in various catalytic applications.</div></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"139 ","pages":"Article 110975"},"PeriodicalIF":17.1000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-ionic C-F optimizes metal-support interaction of Rh/F, N-codoped porous carbon for efficient all-pH hydrogen production\",\"authors\":\"Jian Guo,&nbsp;Rui Ding,&nbsp;Yi Li,&nbsp;Yiqing Lu,&nbsp;Ziyang Yan,&nbsp;Zhiqiang Chen,&nbsp;Yuming He,&nbsp;Qingcheng Yang,&nbsp;Xinchang Guo,&nbsp;Yibo Zhang,&nbsp;Jiajie Luo\",\"doi\":\"10.1016/j.nanoen.2025.110975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Designing efficient and robust Rh-based electrocatalysts with strong metal-support interaction for hydrogen evolution reaction (HER) across various pH conditions is of great significance and challenge. Herein, a hydrogel sealing-pyrolyzing-etching strategy is engineered to anchor ultrafine Rh nanoparticles (Rh NPs) on N-doped porous carbon (Rh/NPC), further introducing strong electronegativity F-dopants to strengthen the metal-support interaction for obtaining high electroactivity Rh NPs/ F, N-codoped porous carbon composite (Rh/FNPC) toward HER. The optimal 8Rh/FNPC renders ultralow overpotentials in 1 <sub>M</sub> KOH (η<sub>10</sub> = 12 mV), 0.5 <sub>M</sub> H<sub>2</sub>SO<sub>4</sub> (η<sub>10</sub> = 42 mV), and 1 <sub>M</sub> phosphate buffer solution (η<sub>10</sub> = 64 mV). Density functional theory (DFT) simulations unveil that the F dopants can optimize the adsorption free energies of reaction intermediates and accelerate the rate-determining steps on the Rh active site, thereby achieving high intrinsic activity and exceptional electroactivity of Rh/FNPC. This work affords new perspectives and avenues for constructing advanced catalysts in various catalytic applications.</div></div>\",\"PeriodicalId\":394,\"journal\":{\"name\":\"Nano Energy\",\"volume\":\"139 \",\"pages\":\"Article 110975\"},\"PeriodicalIF\":17.1000,\"publicationDate\":\"2025-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211285525003349\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285525003349","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在不同的pH条件下,设计高效、稳定、具有强金属-载体相互作用的rh基析氢反应电催化剂具有重要的意义和挑战性。本文采用水凝胶密封-热解-蚀刻策略将超细Rh纳米颗粒(Rh NPs)锚定在n掺杂多孔碳(Rh/NPC)上,进一步引入强电负性F掺杂剂来加强金属-载体相互作用,从而获得高电活性Rh NPs/ F, n共掺杂多孔碳复合材料(Rh/FNPC)。最佳的8Rh/FNPC在1 M KOH (η10 = 12 mV)、0.5 M H2SO4 (η10 = 42 mV)和1 M磷酸盐缓冲溶液(η10 = 64 mV)中具有超低过电位。密度泛函理论(DFT)模拟表明,F掺杂剂可以优化反应中间体的吸附自由能,加快反应在Rh活性位点上的速率决定步骤,从而获得较高的本征活性和优异的Rh/FNPC电活性。本研究为构建各种催化应用的高级催化剂提供了新的视角和途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Semi-ionic C-F optimizes metal-support interaction of Rh/F, N-codoped porous carbon for efficient all-pH hydrogen production

Semi-ionic C-F optimizes metal-support interaction of Rh/F, N-codoped porous carbon for efficient all-pH hydrogen production
Designing efficient and robust Rh-based electrocatalysts with strong metal-support interaction for hydrogen evolution reaction (HER) across various pH conditions is of great significance and challenge. Herein, a hydrogel sealing-pyrolyzing-etching strategy is engineered to anchor ultrafine Rh nanoparticles (Rh NPs) on N-doped porous carbon (Rh/NPC), further introducing strong electronegativity F-dopants to strengthen the metal-support interaction for obtaining high electroactivity Rh NPs/ F, N-codoped porous carbon composite (Rh/FNPC) toward HER. The optimal 8Rh/FNPC renders ultralow overpotentials in 1 M KOH (η10 = 12 mV), 0.5 M H2SO410 = 42 mV), and 1 M phosphate buffer solution (η10 = 64 mV). Density functional theory (DFT) simulations unveil that the F dopants can optimize the adsorption free energies of reaction intermediates and accelerate the rate-determining steps on the Rh active site, thereby achieving high intrinsic activity and exceptional electroactivity of Rh/FNPC. This work affords new perspectives and avenues for constructing advanced catalysts in various catalytic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信