大量Cu2O用于高效电合成尿素的表面工程

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zechuan Dai, Yanxu Chen, Huaikun Zhang, Mingyu Cheng, Bocheng Zhang, Pingyi Feng, Yafei Feng, Genqiang Zhang
{"title":"大量Cu2O用于高效电合成尿素的表面工程","authors":"Zechuan Dai, Yanxu Chen, Huaikun Zhang, Mingyu Cheng, Bocheng Zhang, Pingyi Feng, Yafei Feng, Genqiang Zhang","doi":"10.1038/s41467-025-57708-7","DOIUrl":null,"url":null,"abstract":"<p>Electrochemical urea synthesis has recently emerged as a fascinating energy-efficient alternative route, while it remains challenging to achieve simultaneously high production rate and Faradaic efficiency. Herein, we realize an energy-favorable electrochemical C-N coupling path through CO<sub>2</sub> and NO<sub>3</sub><sup>−</sup> co-reduction at the heterointerfaces of Cu/Cu<sub>2</sub>O microparticles, generated by in-situ electrochemical engineering on bulk Cu<sub>2</sub>O. We achieve urea production rate of 632.1 μg h<sup>−1</sup>mg<sub>cat.</sub><sup>−1</sup> with a corresponding Faradaic efficiency of 42.3% at −0.3 V (versus RHE) under ambient conditions. Operando synchrotron radiation-Fourier transform infrared spectroscopy, along with theoretical calculations, reveals the coupling of intermediates NOH* and CO* at the heterointerfaces, benefiting from the modified electronic structure. This work provides a practical route for catalyst design and insights into urea electrosynthesis systems.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"23 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface engineering on bulk Cu2O for efficient electrosynthesis of urea\",\"authors\":\"Zechuan Dai, Yanxu Chen, Huaikun Zhang, Mingyu Cheng, Bocheng Zhang, Pingyi Feng, Yafei Feng, Genqiang Zhang\",\"doi\":\"10.1038/s41467-025-57708-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrochemical urea synthesis has recently emerged as a fascinating energy-efficient alternative route, while it remains challenging to achieve simultaneously high production rate and Faradaic efficiency. Herein, we realize an energy-favorable electrochemical C-N coupling path through CO<sub>2</sub> and NO<sub>3</sub><sup>−</sup> co-reduction at the heterointerfaces of Cu/Cu<sub>2</sub>O microparticles, generated by in-situ electrochemical engineering on bulk Cu<sub>2</sub>O. We achieve urea production rate of 632.1 μg h<sup>−1</sup>mg<sub>cat.</sub><sup>−1</sup> with a corresponding Faradaic efficiency of 42.3% at −0.3 V (versus RHE) under ambient conditions. Operando synchrotron radiation-Fourier transform infrared spectroscopy, along with theoretical calculations, reveals the coupling of intermediates NOH* and CO* at the heterointerfaces, benefiting from the modified electronic structure. This work provides a practical route for catalyst design and insights into urea electrosynthesis systems.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-57708-7\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57708-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

电化学尿素合成是近年来出现的一种极具吸引力的节能替代途径,但同时实现高生产率和法拉第效率仍然具有挑战性。在此,我们通过原位电化学工程在大块Cu2O上生成的Cu/Cu2O微粒的异质界面上通过CO2和NO3−共还原实现了一条能量有利的电化学C-N耦合路径。尿素产率为632.1 μg h−1mgcat。−0.3 V时的法拉第效率为42.3%(相对于RHE)。Operando同步辐射-傅里叶变换红外光谱,以及理论计算,揭示了中间体NOH*和CO*在异质界面上的耦合,受益于修饰的电子结构。这项工作为催化剂设计和尿素电合成系统的深入研究提供了一条实用的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Surface engineering on bulk Cu2O for efficient electrosynthesis of urea

Surface engineering on bulk Cu2O for efficient electrosynthesis of urea

Electrochemical urea synthesis has recently emerged as a fascinating energy-efficient alternative route, while it remains challenging to achieve simultaneously high production rate and Faradaic efficiency. Herein, we realize an energy-favorable electrochemical C-N coupling path through CO2 and NO3 co-reduction at the heterointerfaces of Cu/Cu2O microparticles, generated by in-situ electrochemical engineering on bulk Cu2O. We achieve urea production rate of 632.1 μg h−1mgcat.−1 with a corresponding Faradaic efficiency of 42.3% at −0.3 V (versus RHE) under ambient conditions. Operando synchrotron radiation-Fourier transform infrared spectroscopy, along with theoretical calculations, reveals the coupling of intermediates NOH* and CO* at the heterointerfaces, benefiting from the modified electronic structure. This work provides a practical route for catalyst design and insights into urea electrosynthesis systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信