{"title":"6.4GΩ-Input-Impedance 104.5dB-CMRR 96dB-DR DD-AFE三电平IDAC用于小直径干电极接口。","authors":"Yijie Li, Yuxiang Tang, Jianhong Zhou, Tianxiang Qu, Zhiliang Hong, Jiawei Xu","doi":"10.1109/TBCAS.2025.3558094","DOIUrl":null,"url":null,"abstract":"<p><p>This article presents a direct-digitization analog front end (DD-AFE) with enhanced input-impedance, common-mode rejection ratio (CMRR), and dynamic range (DR) for wearable biopotential (ExG) signal acquisition, especially for small-diameter dry electrodes. The DD-AFE employs a second-order continuous-time delta-sigma modulator (CT-ΔSM) and multiple circuit techniques to support direct-digitization readouts. These include 1) A high input-impedance input feedforward (FF), embedded in a 4-input 4-bit successive approximation register (SAR) quantizer. This allows two integrators to adopt a compact and energy-efficient G<sub>m</sub>-C structure, and improves stability and linearity, resulting in a 6.6dB increase in DR, 42dB increase in SQNR at peak input and a unity-gain signal transfer function (STF) with a gain flatness of 0.04%. 2) A fixed-voltage dead-band assisted tri-level current-steering DAC (IDAC). It not only increases the DR and CMRR of the DD-AFE but also eliminates the harmonic distortion induced by tri-level dynamic element matching (DEM). 3) A high-gain two-stage G<sub>m</sub>-boosting inverter-based OTA with embedded low-frequency chopping. The former largely improves linearity and CMRR, while the latter mitigates 1/f noise without compromising the input impedance. Fabricated in a 0.18-μm CMOS process, this DD-AFE achieves 6.4GΩ input impedance and 104.5dB CMRR at 50Hz, as well as 90.4dB peak SNDR, 96dB DR, and up to 425mV<sub>PP</sub> linear input range.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 6.4GΩ-Input-Impedance 104.5dB-CMRR 96dB-DR DD-AFE with Tri-Level IDAC for Small-Diameter Dry-Electrode Interface.\",\"authors\":\"Yijie Li, Yuxiang Tang, Jianhong Zhou, Tianxiang Qu, Zhiliang Hong, Jiawei Xu\",\"doi\":\"10.1109/TBCAS.2025.3558094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article presents a direct-digitization analog front end (DD-AFE) with enhanced input-impedance, common-mode rejection ratio (CMRR), and dynamic range (DR) for wearable biopotential (ExG) signal acquisition, especially for small-diameter dry electrodes. The DD-AFE employs a second-order continuous-time delta-sigma modulator (CT-ΔSM) and multiple circuit techniques to support direct-digitization readouts. These include 1) A high input-impedance input feedforward (FF), embedded in a 4-input 4-bit successive approximation register (SAR) quantizer. This allows two integrators to adopt a compact and energy-efficient G<sub>m</sub>-C structure, and improves stability and linearity, resulting in a 6.6dB increase in DR, 42dB increase in SQNR at peak input and a unity-gain signal transfer function (STF) with a gain flatness of 0.04%. 2) A fixed-voltage dead-band assisted tri-level current-steering DAC (IDAC). It not only increases the DR and CMRR of the DD-AFE but also eliminates the harmonic distortion induced by tri-level dynamic element matching (DEM). 3) A high-gain two-stage G<sub>m</sub>-boosting inverter-based OTA with embedded low-frequency chopping. The former largely improves linearity and CMRR, while the latter mitigates 1/f noise without compromising the input impedance. Fabricated in a 0.18-μm CMOS process, this DD-AFE achieves 6.4GΩ input impedance and 104.5dB CMRR at 50Hz, as well as 90.4dB peak SNDR, 96dB DR, and up to 425mV<sub>PP</sub> linear input range.</p>\",\"PeriodicalId\":94031,\"journal\":{\"name\":\"IEEE transactions on biomedical circuits and systems\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biomedical circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TBCAS.2025.3558094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TBCAS.2025.3558094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 6.4GΩ-Input-Impedance 104.5dB-CMRR 96dB-DR DD-AFE with Tri-Level IDAC for Small-Diameter Dry-Electrode Interface.
This article presents a direct-digitization analog front end (DD-AFE) with enhanced input-impedance, common-mode rejection ratio (CMRR), and dynamic range (DR) for wearable biopotential (ExG) signal acquisition, especially for small-diameter dry electrodes. The DD-AFE employs a second-order continuous-time delta-sigma modulator (CT-ΔSM) and multiple circuit techniques to support direct-digitization readouts. These include 1) A high input-impedance input feedforward (FF), embedded in a 4-input 4-bit successive approximation register (SAR) quantizer. This allows two integrators to adopt a compact and energy-efficient Gm-C structure, and improves stability and linearity, resulting in a 6.6dB increase in DR, 42dB increase in SQNR at peak input and a unity-gain signal transfer function (STF) with a gain flatness of 0.04%. 2) A fixed-voltage dead-band assisted tri-level current-steering DAC (IDAC). It not only increases the DR and CMRR of the DD-AFE but also eliminates the harmonic distortion induced by tri-level dynamic element matching (DEM). 3) A high-gain two-stage Gm-boosting inverter-based OTA with embedded low-frequency chopping. The former largely improves linearity and CMRR, while the latter mitigates 1/f noise without compromising the input impedance. Fabricated in a 0.18-μm CMOS process, this DD-AFE achieves 6.4GΩ input impedance and 104.5dB CMRR at 50Hz, as well as 90.4dB peak SNDR, 96dB DR, and up to 425mVPP linear input range.