首台多弯消色差同步加速器的蛋白质晶体学研究现状与展望。

IF 2.5 3区 物理与天体物理
Journal of Synchrotron Radiation Pub Date : 2025-05-01 Epub Date: 2025-04-04 DOI:10.1107/S1600577525002255
Ana Gonzalez, Tobias Krojer, Jie Nan, Monika Bjelčić, Swati Aggarwal, Ishkan Gorgisyan, Mirko Milas, Mikel Eguiraun, Cecilia Casadei, Manoop Chenchiliyan, Andrius Jurgilaitis, David Kroon, Byungnam Ahn, John Carl Ekström, Oskar Aurelius, Dean Lang, Thomas Ursby, Marjolein M G M Thunnissen
{"title":"首台多弯消色差同步加速器的蛋白质晶体学研究现状与展望。","authors":"Ana Gonzalez, Tobias Krojer, Jie Nan, Monika Bjelčić, Swati Aggarwal, Ishkan Gorgisyan, Mirko Milas, Mikel Eguiraun, Cecilia Casadei, Manoop Chenchiliyan, Andrius Jurgilaitis, David Kroon, Byungnam Ahn, John Carl Ekström, Oskar Aurelius, Dean Lang, Thomas Ursby, Marjolein M G M Thunnissen","doi":"10.1107/S1600577525002255","DOIUrl":null,"url":null,"abstract":"<p><p>The first multi-bend achromat based synchrotron MAX IV operates two protein crystallography beamlines, BioMAX and MicroMAX. BioMAX is designed as a versatile, stable, high-throughput beamline catering for most protein crystallography experiments. MicroMAX is a more ambitious beamline dedicated to serial crystallography including time-resolved experiments. Both beamlines exploit the special characteristics of fourth-generation beamlines provided by the 3 GeV ring of MAX IV. In addition, the fragment-based drug discovery platform, FragMAX, is hosted and, at the FemtoMAX beamline, protein diffraction experiments exploring ultrafast time resolution can be performed. A technical and operational overview of the different beamlines and the platform is given as well as an outlook for protein crystallography embedded in the wider possibilities that MAX IV offers to users in the life sciences.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":" ","pages":"779-791"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12067333/pdf/","citationCount":"0","resultStr":"{\"title\":\"Status and perspective of protein crystallography at the first multi-bend achromat based synchrotron MAX IV.\",\"authors\":\"Ana Gonzalez, Tobias Krojer, Jie Nan, Monika Bjelčić, Swati Aggarwal, Ishkan Gorgisyan, Mirko Milas, Mikel Eguiraun, Cecilia Casadei, Manoop Chenchiliyan, Andrius Jurgilaitis, David Kroon, Byungnam Ahn, John Carl Ekström, Oskar Aurelius, Dean Lang, Thomas Ursby, Marjolein M G M Thunnissen\",\"doi\":\"10.1107/S1600577525002255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The first multi-bend achromat based synchrotron MAX IV operates two protein crystallography beamlines, BioMAX and MicroMAX. BioMAX is designed as a versatile, stable, high-throughput beamline catering for most protein crystallography experiments. MicroMAX is a more ambitious beamline dedicated to serial crystallography including time-resolved experiments. Both beamlines exploit the special characteristics of fourth-generation beamlines provided by the 3 GeV ring of MAX IV. In addition, the fragment-based drug discovery platform, FragMAX, is hosted and, at the FemtoMAX beamline, protein diffraction experiments exploring ultrafast time resolution can be performed. A technical and operational overview of the different beamlines and the platform is given as well as an outlook for protein crystallography embedded in the wider possibilities that MAX IV offers to users in the life sciences.</p>\",\"PeriodicalId\":48729,\"journal\":{\"name\":\"Journal of Synchrotron Radiation\",\"volume\":\" \",\"pages\":\"779-791\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12067333/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Synchrotron Radiation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1107/S1600577525002255\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synchrotron Radiation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1107/S1600577525002255","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

第一个基于多弯消色差的同步加速器MAX IV操作两条蛋白质晶体学光束线,BioMAX和MicroMAX。BioMAX是一种多功能,稳定,高通量的光束线,适用于大多数蛋白质晶体学实验。MicroMAX是一个更雄心勃勃的光束线,专门用于串行晶体学,包括时间分辨实验。这两条光束线都利用了MAX IV的3gev环提供的第四代光束线的特殊特性。此外,基于片段的药物发现平台FragMAX也被托管,在FemtoMAX光束线上,可以进行探索超快时间分辨率的蛋白质衍射实验。给出了不同光束线和平台的技术和操作概述,以及MAX IV为生命科学用户提供的更广泛可能性中嵌入的蛋白质晶体学的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Status and perspective of protein crystallography at the first multi-bend achromat based synchrotron MAX IV.

The first multi-bend achromat based synchrotron MAX IV operates two protein crystallography beamlines, BioMAX and MicroMAX. BioMAX is designed as a versatile, stable, high-throughput beamline catering for most protein crystallography experiments. MicroMAX is a more ambitious beamline dedicated to serial crystallography including time-resolved experiments. Both beamlines exploit the special characteristics of fourth-generation beamlines provided by the 3 GeV ring of MAX IV. In addition, the fragment-based drug discovery platform, FragMAX, is hosted and, at the FemtoMAX beamline, protein diffraction experiments exploring ultrafast time resolution can be performed. A technical and operational overview of the different beamlines and the platform is given as well as an outlook for protein crystallography embedded in the wider possibilities that MAX IV offers to users in the life sciences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Synchrotron Radiation
Journal of Synchrotron Radiation INSTRUMENTS & INSTRUMENTATIONOPTICS&-OPTICS
CiteScore
5.60
自引率
12.00%
发文量
289
审稿时长
1 months
期刊介绍: Synchrotron radiation research is rapidly expanding with many new sources of radiation being created globally. Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal of Synchrotron Radiation provides comprehensive coverage of the entire field of synchrotron radiation and free-electron laser research including instrumentation, theory, computing and scientific applications in areas such as biology, nanoscience and materials science. Rapid publication ensures an up-to-date information resource for scientists and engineers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信