径向k空间采样T1松弛增强稳态采集:一种新的脉冲序列家族,用于运动鲁棒体积T1加权MRI,改善病变显著性。

IF 7 1区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Ruoxun Zi, Robert R Edelman, Christoph Maier, Mahesh Keerthivasan, Riccardo Lattanzi, Daniel K Sodickson, Kai Tobias Block
{"title":"径向k空间采样T1松弛增强稳态采集:一种新的脉冲序列家族,用于运动鲁棒体积T1加权MRI,改善病变显著性。","authors":"Ruoxun Zi, Robert R Edelman, Christoph Maier, Mahesh Keerthivasan, Riccardo Lattanzi, Daniel K Sodickson, Kai Tobias Block","doi":"10.1097/RLI.0000000000001185","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Magnetization-prepared rapid gradient-echo (MP-RAGE) sequences are routinely acquired for brain exams, providing high conspicuity for enhancing lesions. Vessels, however, also appear bright, which can complicate the detection of small lesions. T1RESS (T1 relaxation-enhanced steady-state) sequences have been proposed as an alternative to MP-RAGE, offering improved lesion conspicuity and suppression of blood vessels. This work aims to evaluate the performance of radial T1RESS variants for motion-robust contrast-enhanced brain MRI.</p><p><strong>Materials and methods: </strong>Radial stack-of-stars sampling was implemented for steady-state free-precession-based rapid T1RESS acquisition with saturation recovery preparation. Three variants were developed using a balanced steady-state free-precession readout (bT1RESS), an unbalanced fast imaging steady precession (FISP) readout (uT1RESS-FISP), and an unbalanced reversed FISP readout (uT1RESS-PSIF). Image contrast was evaluated in numerical simulations and phantom experiments. The motion robustness of radial T1RESS was demonstrated with a motion phantom. Four patients and six healthy volunteers were scanned at 3 T and 0.55 T. Extensions were developed combining T1RESS with GRASP for dynamic imaging, with GRAPPA for accelerated scans, and with Dixon for fat/water separation.</p><p><strong>Results: </strong>In simulations and phantom scans, uT1RESS-FISP provided higher signal intensity for regions with lower T1 values (<500 ms) compared with MP-RAGE. In motion experiments, radial uT1RESS-FISP showed fewer artifacts than MP-RAGE and Cartesian uT1RESS-FISP. In patients, both unbalanced uT1RESS variants provided higher lesion conspicuity than MP-RAGE. Blood vessels appeared bright with MP-RAGE, gray with uT1RESS-FISP, and dark with uT1RESS-PSIF. At 0.55 T, bT1RESS provided high signal-to-noise ratio T1-weighted images without banding artifacts. Lastly, dynamic T1RESS images with a temporal resolution of 10.14 seconds/frame were generated using the GRASP algorithm.</p><p><strong>Conclusions: </strong>Radial T1RESS sequences offer improved lesion conspicuity and motion robustness and enable dynamic imaging for contrast-enhanced brain MRI. Both uT1RESS variants showed higher tumor-to-brain contrast than MP-RAGE and may find application as alternative techniques for imaging uncooperative patients with small brain lesions.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"T1 Relaxation-Enhanced Steady-State Acquisition With Radial k-Space Sampling: A Novel Family of Pulse Sequences for Motion-Robust Volumetric T1-Weighted MRI With Improved Lesion Conspicuity.\",\"authors\":\"Ruoxun Zi, Robert R Edelman, Christoph Maier, Mahesh Keerthivasan, Riccardo Lattanzi, Daniel K Sodickson, Kai Tobias Block\",\"doi\":\"10.1097/RLI.0000000000001185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Magnetization-prepared rapid gradient-echo (MP-RAGE) sequences are routinely acquired for brain exams, providing high conspicuity for enhancing lesions. Vessels, however, also appear bright, which can complicate the detection of small lesions. T1RESS (T1 relaxation-enhanced steady-state) sequences have been proposed as an alternative to MP-RAGE, offering improved lesion conspicuity and suppression of blood vessels. This work aims to evaluate the performance of radial T1RESS variants for motion-robust contrast-enhanced brain MRI.</p><p><strong>Materials and methods: </strong>Radial stack-of-stars sampling was implemented for steady-state free-precession-based rapid T1RESS acquisition with saturation recovery preparation. Three variants were developed using a balanced steady-state free-precession readout (bT1RESS), an unbalanced fast imaging steady precession (FISP) readout (uT1RESS-FISP), and an unbalanced reversed FISP readout (uT1RESS-PSIF). Image contrast was evaluated in numerical simulations and phantom experiments. The motion robustness of radial T1RESS was demonstrated with a motion phantom. Four patients and six healthy volunteers were scanned at 3 T and 0.55 T. Extensions were developed combining T1RESS with GRASP for dynamic imaging, with GRAPPA for accelerated scans, and with Dixon for fat/water separation.</p><p><strong>Results: </strong>In simulations and phantom scans, uT1RESS-FISP provided higher signal intensity for regions with lower T1 values (<500 ms) compared with MP-RAGE. In motion experiments, radial uT1RESS-FISP showed fewer artifacts than MP-RAGE and Cartesian uT1RESS-FISP. In patients, both unbalanced uT1RESS variants provided higher lesion conspicuity than MP-RAGE. Blood vessels appeared bright with MP-RAGE, gray with uT1RESS-FISP, and dark with uT1RESS-PSIF. At 0.55 T, bT1RESS provided high signal-to-noise ratio T1-weighted images without banding artifacts. Lastly, dynamic T1RESS images with a temporal resolution of 10.14 seconds/frame were generated using the GRASP algorithm.</p><p><strong>Conclusions: </strong>Radial T1RESS sequences offer improved lesion conspicuity and motion robustness and enable dynamic imaging for contrast-enhanced brain MRI. Both uT1RESS variants showed higher tumor-to-brain contrast than MP-RAGE and may find application as alternative techniques for imaging uncooperative patients with small brain lesions.</p>\",\"PeriodicalId\":14486,\"journal\":{\"name\":\"Investigative Radiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Investigative Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/RLI.0000000000001185\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigative Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RLI.0000000000001185","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:磁化制备的快速梯度回声(MP-RAGE)序列通常用于脑部检查,为增强病变提供高显著性。然而,血管也显得明亮,这可能使小病变的检测复杂化。T1RESS (T1松弛增强稳态)序列已被提出作为MP-RAGE的替代方案,可改善病变的显著性和抑制血管。这项工作旨在评估径向T1RESS变体在运动鲁棒性对比增强脑MRI中的性能。材料和方法:采用径向星堆采样技术,实现了基于自由进动的稳态快速T1RESS采集和饱和恢复制备。使用平衡稳态自由进动读数(bT1RESS),不平衡快速成像稳定进动(FISP)读数(uT1RESS-FISP)和不平衡反向FISP读数(uT1RESS-PSIF)开发了三个变体。通过数值模拟和模拟实验对图像对比度进行了评价。用运动模体验证了径向T1RESS的运动鲁棒性。4名患者和6名健康志愿者分别在3 T和0.55 T下进行扫描,并结合T1RESS与GRASP进行动态成像,与GRAPPA进行加速扫描,与Dixon进行脂肪/水分离。结果:在模拟和幻象扫描中,uT1RESS-FISP为T1值较低的区域提供了更高的信号强度(结论:径向T1RESS序列改善了病变的显著性和运动鲁棒性,并为脑MRI增强提供了动态成像。这两种uT1RESS变体都比MP-RAGE显示出更高的肿瘤-脑对比度,可能会被用作对患有小脑病变的不合作患者成像的替代技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
T1 Relaxation-Enhanced Steady-State Acquisition With Radial k-Space Sampling: A Novel Family of Pulse Sequences for Motion-Robust Volumetric T1-Weighted MRI With Improved Lesion Conspicuity.

Objectives: Magnetization-prepared rapid gradient-echo (MP-RAGE) sequences are routinely acquired for brain exams, providing high conspicuity for enhancing lesions. Vessels, however, also appear bright, which can complicate the detection of small lesions. T1RESS (T1 relaxation-enhanced steady-state) sequences have been proposed as an alternative to MP-RAGE, offering improved lesion conspicuity and suppression of blood vessels. This work aims to evaluate the performance of radial T1RESS variants for motion-robust contrast-enhanced brain MRI.

Materials and methods: Radial stack-of-stars sampling was implemented for steady-state free-precession-based rapid T1RESS acquisition with saturation recovery preparation. Three variants were developed using a balanced steady-state free-precession readout (bT1RESS), an unbalanced fast imaging steady precession (FISP) readout (uT1RESS-FISP), and an unbalanced reversed FISP readout (uT1RESS-PSIF). Image contrast was evaluated in numerical simulations and phantom experiments. The motion robustness of radial T1RESS was demonstrated with a motion phantom. Four patients and six healthy volunteers were scanned at 3 T and 0.55 T. Extensions were developed combining T1RESS with GRASP for dynamic imaging, with GRAPPA for accelerated scans, and with Dixon for fat/water separation.

Results: In simulations and phantom scans, uT1RESS-FISP provided higher signal intensity for regions with lower T1 values (<500 ms) compared with MP-RAGE. In motion experiments, radial uT1RESS-FISP showed fewer artifacts than MP-RAGE and Cartesian uT1RESS-FISP. In patients, both unbalanced uT1RESS variants provided higher lesion conspicuity than MP-RAGE. Blood vessels appeared bright with MP-RAGE, gray with uT1RESS-FISP, and dark with uT1RESS-PSIF. At 0.55 T, bT1RESS provided high signal-to-noise ratio T1-weighted images without banding artifacts. Lastly, dynamic T1RESS images with a temporal resolution of 10.14 seconds/frame were generated using the GRASP algorithm.

Conclusions: Radial T1RESS sequences offer improved lesion conspicuity and motion robustness and enable dynamic imaging for contrast-enhanced brain MRI. Both uT1RESS variants showed higher tumor-to-brain contrast than MP-RAGE and may find application as alternative techniques for imaging uncooperative patients with small brain lesions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Investigative Radiology
Investigative Radiology 医学-核医学
CiteScore
15.10
自引率
16.40%
发文量
188
审稿时长
4-8 weeks
期刊介绍: Investigative Radiology publishes original, peer-reviewed reports on clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, and related modalities. Emphasis is on early and timely publication. Primarily research-oriented, the journal also includes a wide variety of features of interest to clinical radiologists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信