使用可伸缩相干光子处理器的复值矩阵向量乘法

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yiwei Xie, Xiyuan Ke, Shihan Hong, Yuxin Sun, Lijia Song, Huan Li, Pan Wang, Daoxin Dai
{"title":"使用可伸缩相干光子处理器的复值矩阵向量乘法","authors":"Yiwei Xie,&nbsp;Xiyuan Ke,&nbsp;Shihan Hong,&nbsp;Yuxin Sun,&nbsp;Lijia Song,&nbsp;Huan Li,&nbsp;Pan Wang,&nbsp;Daoxin Dai","doi":"10.1126/sciadv.ads7475","DOIUrl":null,"url":null,"abstract":"<div >Matrix-vector multiplication is a fundamental operation in modern signal processing and artificial intelligence. Developing a chip-scale photonic matrix-vector multiplication processor (MVMP) offers the potential for notably enhanced computing speed and energy efficiency beyond microelectronics. Here, we propose and demonstrate a 16-channel programmable on-chip coherent photonic processor capable of performing complex-valued matrix-vector multiplication at a computing speed of 1.28 tera-operations per second (TOPS). Low phase error Mach-Zehnder interferometers mesh and ultralow-loss broadened photonic waveguide delay lines are firstly combined for optical computing, enabling the encoding of amplitude and phase information, along with high-speed coherent detection. The proposed MVMP demonstrates high flexibility in implementing various functions, including arbitrary matrix transformation, parallel image processing, and handwritten digital recognition. Our work demonstrates the MVMP’s advantages in scalability and function flexibility, enabled by the low-loss and low phase error designs, making a substantial advancement in high-speed and large-scale photonic computing technologies.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 14","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ads7475","citationCount":"0","resultStr":"{\"title\":\"Complex-valued matrix-vector multiplication using a scalable coherent photonic processor\",\"authors\":\"Yiwei Xie,&nbsp;Xiyuan Ke,&nbsp;Shihan Hong,&nbsp;Yuxin Sun,&nbsp;Lijia Song,&nbsp;Huan Li,&nbsp;Pan Wang,&nbsp;Daoxin Dai\",\"doi\":\"10.1126/sciadv.ads7475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Matrix-vector multiplication is a fundamental operation in modern signal processing and artificial intelligence. Developing a chip-scale photonic matrix-vector multiplication processor (MVMP) offers the potential for notably enhanced computing speed and energy efficiency beyond microelectronics. Here, we propose and demonstrate a 16-channel programmable on-chip coherent photonic processor capable of performing complex-valued matrix-vector multiplication at a computing speed of 1.28 tera-operations per second (TOPS). Low phase error Mach-Zehnder interferometers mesh and ultralow-loss broadened photonic waveguide delay lines are firstly combined for optical computing, enabling the encoding of amplitude and phase information, along with high-speed coherent detection. The proposed MVMP demonstrates high flexibility in implementing various functions, including arbitrary matrix transformation, parallel image processing, and handwritten digital recognition. Our work demonstrates the MVMP’s advantages in scalability and function flexibility, enabled by the low-loss and low phase error designs, making a substantial advancement in high-speed and large-scale photonic computing technologies.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 14\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.ads7475\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.ads7475\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ads7475","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

矩阵向量乘法是现代信号处理和人工智能中的一项基本运算。开发一种芯片级光子矩阵矢量乘法处理器(MVMP)提供了显著提高计算速度和能源效率的潜力,超越了微电子技术。在这里,我们提出并演示了一个16通道可编程的片上相干光子处理器,能够以每秒1.28万亿次(TOPS)的计算速度执行复值矩阵向量乘法。首次将低相位误差Mach-Zehnder干涉仪网格和超低损耗加宽光子波导延迟线结合在一起进行光学计算,实现了幅度和相位信息的编码,以及高速相干检测。所提出的MVMP在实现任意矩阵变换、并行图像处理和手写数字识别等功能方面具有很高的灵活性。我们的工作证明了MVMP在可扩展性和功能灵活性方面的优势,通过低损耗和低相位误差设计实现,在高速和大规模光子计算技术方面取得了实质性进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Complex-valued matrix-vector multiplication using a scalable coherent photonic processor

Complex-valued matrix-vector multiplication using a scalable coherent photonic processor
Matrix-vector multiplication is a fundamental operation in modern signal processing and artificial intelligence. Developing a chip-scale photonic matrix-vector multiplication processor (MVMP) offers the potential for notably enhanced computing speed and energy efficiency beyond microelectronics. Here, we propose and demonstrate a 16-channel programmable on-chip coherent photonic processor capable of performing complex-valued matrix-vector multiplication at a computing speed of 1.28 tera-operations per second (TOPS). Low phase error Mach-Zehnder interferometers mesh and ultralow-loss broadened photonic waveguide delay lines are firstly combined for optical computing, enabling the encoding of amplitude and phase information, along with high-speed coherent detection. The proposed MVMP demonstrates high flexibility in implementing various functions, including arbitrary matrix transformation, parallel image processing, and handwritten digital recognition. Our work demonstrates the MVMP’s advantages in scalability and function flexibility, enabled by the low-loss and low phase error designs, making a substantial advancement in high-speed and large-scale photonic computing technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信