模拟木星黎明边的磁盘:利用朱诺号观测来约束径向力平衡模型

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
G. Provan, J. D. Nichols, S. W. H. Cowley, F. Bagenal, R. J. Wilson
{"title":"模拟木星黎明边的磁盘:利用朱诺号观测来约束径向力平衡模型","authors":"G. Provan,&nbsp;J. D. Nichols,&nbsp;S. W. H. Cowley,&nbsp;F. Bagenal,&nbsp;R. J. Wilson","doi":"10.1029/2024JA033658","DOIUrl":null,"url":null,"abstract":"<p>This study investigates Jupiter's dawnside magnetodisc, using plasma and magnetic field measurements from Juno orbits 5 to 12 to refine a radial force-balance magnetodisc model. This iterative vector potential model examines variations in the azimuthal magnetodisc current, coupled with a magnetosphere-ionosphere coupling model from which the radial current is simultaneously obtained. Three key force-balance parameters are used: the hot plasma parameter (<i>pV</i>, Pa m T<sup>−1</sup>), the mass outflow rate of cold iogenic plasma, and the height-integrated ionospheric Pedersen conductivity. Axisymmetric equilibrium outputs are compared to Juno's residual magnetic field and heavy ion density data between 15 and 60 R<sub>J</sub>. Optimal parameter values for each orbit and overall current distributions are determined. Averaged modeled values are (1.63 ± 0.17) × 10<sup>7</sup> Pa m T<sup>−1</sup> for the hot plasma parameter, 1,340 ± 350 kg s<sup>−1</sup> for the mass outflow rate, and 0.26 ± 0.08 mho for the Pedersen conductivity. The overall modeled magnetodisc azimuthal current to 60 R<sub>J</sub> is 266 ± 23 MA, varying similarly to the currents determined by Connerney et al. (2020, https://doi.org/10.1029/2020JA028138) but typically ∼50 MA larger. Of this total, the hot plasma current 158 ± 13 MA is larger than the cold plasma current 109 ± 23 MA, and dominates in the inner region. The cold plasma current typically becomes the larger component beyond ∼35 R<sub>J</sub> and exhibits greater orbit-to-orbit variability. The mass outflow rate from Io is the primary driver of magnetodisc current variability. The north-south summed radial magnetosphere-ionosphere coupling current 104 ± 31 MA is typically ∼40% of the total azimuthal current, with variations that are only weakly correlated.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA033658","citationCount":"0","resultStr":"{\"title\":\"Modeling Jupiter's Dawnside Magnetodisc: Using Juno Observations to Constrain a Radial Force-Balance Model\",\"authors\":\"G. Provan,&nbsp;J. D. Nichols,&nbsp;S. W. H. Cowley,&nbsp;F. Bagenal,&nbsp;R. J. Wilson\",\"doi\":\"10.1029/2024JA033658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigates Jupiter's dawnside magnetodisc, using plasma and magnetic field measurements from Juno orbits 5 to 12 to refine a radial force-balance magnetodisc model. This iterative vector potential model examines variations in the azimuthal magnetodisc current, coupled with a magnetosphere-ionosphere coupling model from which the radial current is simultaneously obtained. Three key force-balance parameters are used: the hot plasma parameter (<i>pV</i>, Pa m T<sup>−1</sup>), the mass outflow rate of cold iogenic plasma, and the height-integrated ionospheric Pedersen conductivity. Axisymmetric equilibrium outputs are compared to Juno's residual magnetic field and heavy ion density data between 15 and 60 R<sub>J</sub>. Optimal parameter values for each orbit and overall current distributions are determined. Averaged modeled values are (1.63 ± 0.17) × 10<sup>7</sup> Pa m T<sup>−1</sup> for the hot plasma parameter, 1,340 ± 350 kg s<sup>−1</sup> for the mass outflow rate, and 0.26 ± 0.08 mho for the Pedersen conductivity. The overall modeled magnetodisc azimuthal current to 60 R<sub>J</sub> is 266 ± 23 MA, varying similarly to the currents determined by Connerney et al. (2020, https://doi.org/10.1029/2020JA028138) but typically ∼50 MA larger. Of this total, the hot plasma current 158 ± 13 MA is larger than the cold plasma current 109 ± 23 MA, and dominates in the inner region. The cold plasma current typically becomes the larger component beyond ∼35 R<sub>J</sub> and exhibits greater orbit-to-orbit variability. The mass outflow rate from Io is the primary driver of magnetodisc current variability. The north-south summed radial magnetosphere-ionosphere coupling current 104 ± 31 MA is typically ∼40% of the total azimuthal current, with variations that are only weakly correlated.</p>\",\"PeriodicalId\":15894,\"journal\":{\"name\":\"Journal of Geophysical Research: Space Physics\",\"volume\":\"130 4\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA033658\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Space Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033658\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033658","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

这项研究调查了木星黎明边的磁碟,利用朱诺号轨道5到12的等离子体和磁场测量来完善径向力平衡磁碟模型。该迭代向量势模型考察了方位磁盘电流的变化,并结合了磁层-电离层耦合模型,从该模型可以同时获得径向电流。使用了三个关键的力平衡参数:热等离子体参数(pV, Pa m T−1),冷等离子体的质量流出率和高度积分电离层Pedersen电导率。轴对称平衡输出与朱诺号的剩余磁场和15至60 RJ之间的重离子密度数据进行了比较。确定每个轨道和总体电流分布的最优参数值。热等离子体参数的平均模型值为(1.63±0.17)× 107 Pa m T - 1,质量流出率为1,340±350 kg s - 1, Pedersen电导率为0.26±0.08 mho。总体模拟的磁碟方位电流为266±23 MA,与Connerney等人(2020,https://doi.org/10.1029/2020JA028138)确定的电流变化相似,但通常要大~ 50 MA。其中,热等离子体电流(158±13 MA)大于冷等离子体电流(109±23 MA),并在内部区域占主导地位。在~ 35 RJ以上,冷等离子体电流通常成为较大的组成部分,并表现出更大的轨道间变异性。木卫一的质量流出率是磁碟电流变化的主要驱动因素。南北合计径向磁层-电离层耦合电流(104±31 MA)通常占总方位电流的约40%,其变化相关性较弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modeling Jupiter's Dawnside Magnetodisc: Using Juno Observations to Constrain a Radial Force-Balance Model

Modeling Jupiter's Dawnside Magnetodisc: Using Juno Observations to Constrain a Radial Force-Balance Model

This study investigates Jupiter's dawnside magnetodisc, using plasma and magnetic field measurements from Juno orbits 5 to 12 to refine a radial force-balance magnetodisc model. This iterative vector potential model examines variations in the azimuthal magnetodisc current, coupled with a magnetosphere-ionosphere coupling model from which the radial current is simultaneously obtained. Three key force-balance parameters are used: the hot plasma parameter (pV, Pa m T−1), the mass outflow rate of cold iogenic plasma, and the height-integrated ionospheric Pedersen conductivity. Axisymmetric equilibrium outputs are compared to Juno's residual magnetic field and heavy ion density data between 15 and 60 RJ. Optimal parameter values for each orbit and overall current distributions are determined. Averaged modeled values are (1.63 ± 0.17) × 107 Pa m T−1 for the hot plasma parameter, 1,340 ± 350 kg s−1 for the mass outflow rate, and 0.26 ± 0.08 mho for the Pedersen conductivity. The overall modeled magnetodisc azimuthal current to 60 RJ is 266 ± 23 MA, varying similarly to the currents determined by Connerney et al. (2020, https://doi.org/10.1029/2020JA028138) but typically ∼50 MA larger. Of this total, the hot plasma current 158 ± 13 MA is larger than the cold plasma current 109 ± 23 MA, and dominates in the inner region. The cold plasma current typically becomes the larger component beyond ∼35 RJ and exhibits greater orbit-to-orbit variability. The mass outflow rate from Io is the primary driver of magnetodisc current variability. The north-south summed radial magnetosphere-ionosphere coupling current 104 ± 31 MA is typically ∼40% of the total azimuthal current, with variations that are only weakly correlated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信