G. Provan, J. D. Nichols, S. W. H. Cowley, F. Bagenal, R. J. Wilson
{"title":"模拟木星黎明边的磁盘:利用朱诺号观测来约束径向力平衡模型","authors":"G. Provan, J. D. Nichols, S. W. H. Cowley, F. Bagenal, R. J. Wilson","doi":"10.1029/2024JA033658","DOIUrl":null,"url":null,"abstract":"<p>This study investigates Jupiter's dawnside magnetodisc, using plasma and magnetic field measurements from Juno orbits 5 to 12 to refine a radial force-balance magnetodisc model. This iterative vector potential model examines variations in the azimuthal magnetodisc current, coupled with a magnetosphere-ionosphere coupling model from which the radial current is simultaneously obtained. Three key force-balance parameters are used: the hot plasma parameter (<i>pV</i>, Pa m T<sup>−1</sup>), the mass outflow rate of cold iogenic plasma, and the height-integrated ionospheric Pedersen conductivity. Axisymmetric equilibrium outputs are compared to Juno's residual magnetic field and heavy ion density data between 15 and 60 R<sub>J</sub>. Optimal parameter values for each orbit and overall current distributions are determined. Averaged modeled values are (1.63 ± 0.17) × 10<sup>7</sup> Pa m T<sup>−1</sup> for the hot plasma parameter, 1,340 ± 350 kg s<sup>−1</sup> for the mass outflow rate, and 0.26 ± 0.08 mho for the Pedersen conductivity. The overall modeled magnetodisc azimuthal current to 60 R<sub>J</sub> is 266 ± 23 MA, varying similarly to the currents determined by Connerney et al. (2020, https://doi.org/10.1029/2020JA028138) but typically ∼50 MA larger. Of this total, the hot plasma current 158 ± 13 MA is larger than the cold plasma current 109 ± 23 MA, and dominates in the inner region. The cold plasma current typically becomes the larger component beyond ∼35 R<sub>J</sub> and exhibits greater orbit-to-orbit variability. The mass outflow rate from Io is the primary driver of magnetodisc current variability. The north-south summed radial magnetosphere-ionosphere coupling current 104 ± 31 MA is typically ∼40% of the total azimuthal current, with variations that are only weakly correlated.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA033658","citationCount":"0","resultStr":"{\"title\":\"Modeling Jupiter's Dawnside Magnetodisc: Using Juno Observations to Constrain a Radial Force-Balance Model\",\"authors\":\"G. Provan, J. D. Nichols, S. W. H. Cowley, F. Bagenal, R. J. Wilson\",\"doi\":\"10.1029/2024JA033658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigates Jupiter's dawnside magnetodisc, using plasma and magnetic field measurements from Juno orbits 5 to 12 to refine a radial force-balance magnetodisc model. This iterative vector potential model examines variations in the azimuthal magnetodisc current, coupled with a magnetosphere-ionosphere coupling model from which the radial current is simultaneously obtained. Three key force-balance parameters are used: the hot plasma parameter (<i>pV</i>, Pa m T<sup>−1</sup>), the mass outflow rate of cold iogenic plasma, and the height-integrated ionospheric Pedersen conductivity. Axisymmetric equilibrium outputs are compared to Juno's residual magnetic field and heavy ion density data between 15 and 60 R<sub>J</sub>. Optimal parameter values for each orbit and overall current distributions are determined. Averaged modeled values are (1.63 ± 0.17) × 10<sup>7</sup> Pa m T<sup>−1</sup> for the hot plasma parameter, 1,340 ± 350 kg s<sup>−1</sup> for the mass outflow rate, and 0.26 ± 0.08 mho for the Pedersen conductivity. The overall modeled magnetodisc azimuthal current to 60 R<sub>J</sub> is 266 ± 23 MA, varying similarly to the currents determined by Connerney et al. (2020, https://doi.org/10.1029/2020JA028138) but typically ∼50 MA larger. Of this total, the hot plasma current 158 ± 13 MA is larger than the cold plasma current 109 ± 23 MA, and dominates in the inner region. The cold plasma current typically becomes the larger component beyond ∼35 R<sub>J</sub> and exhibits greater orbit-to-orbit variability. The mass outflow rate from Io is the primary driver of magnetodisc current variability. The north-south summed radial magnetosphere-ionosphere coupling current 104 ± 31 MA is typically ∼40% of the total azimuthal current, with variations that are only weakly correlated.</p>\",\"PeriodicalId\":15894,\"journal\":{\"name\":\"Journal of Geophysical Research: Space Physics\",\"volume\":\"130 4\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA033658\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Space Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033658\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033658","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
这项研究调查了木星黎明边的磁碟,利用朱诺号轨道5到12的等离子体和磁场测量来完善径向力平衡磁碟模型。该迭代向量势模型考察了方位磁盘电流的变化,并结合了磁层-电离层耦合模型,从该模型可以同时获得径向电流。使用了三个关键的力平衡参数:热等离子体参数(pV, Pa m T−1),冷等离子体的质量流出率和高度积分电离层Pedersen电导率。轴对称平衡输出与朱诺号的剩余磁场和15至60 RJ之间的重离子密度数据进行了比较。确定每个轨道和总体电流分布的最优参数值。热等离子体参数的平均模型值为(1.63±0.17)× 107 Pa m T - 1,质量流出率为1,340±350 kg s - 1, Pedersen电导率为0.26±0.08 mho。总体模拟的磁碟方位电流为266±23 MA,与Connerney等人(2020,https://doi.org/10.1029/2020JA028138)确定的电流变化相似,但通常要大~ 50 MA。其中,热等离子体电流(158±13 MA)大于冷等离子体电流(109±23 MA),并在内部区域占主导地位。在~ 35 RJ以上,冷等离子体电流通常成为较大的组成部分,并表现出更大的轨道间变异性。木卫一的质量流出率是磁碟电流变化的主要驱动因素。南北合计径向磁层-电离层耦合电流(104±31 MA)通常占总方位电流的约40%,其变化相关性较弱。
Modeling Jupiter's Dawnside Magnetodisc: Using Juno Observations to Constrain a Radial Force-Balance Model
This study investigates Jupiter's dawnside magnetodisc, using plasma and magnetic field measurements from Juno orbits 5 to 12 to refine a radial force-balance magnetodisc model. This iterative vector potential model examines variations in the azimuthal magnetodisc current, coupled with a magnetosphere-ionosphere coupling model from which the radial current is simultaneously obtained. Three key force-balance parameters are used: the hot plasma parameter (pV, Pa m T−1), the mass outflow rate of cold iogenic plasma, and the height-integrated ionospheric Pedersen conductivity. Axisymmetric equilibrium outputs are compared to Juno's residual magnetic field and heavy ion density data between 15 and 60 RJ. Optimal parameter values for each orbit and overall current distributions are determined. Averaged modeled values are (1.63 ± 0.17) × 107 Pa m T−1 for the hot plasma parameter, 1,340 ± 350 kg s−1 for the mass outflow rate, and 0.26 ± 0.08 mho for the Pedersen conductivity. The overall modeled magnetodisc azimuthal current to 60 RJ is 266 ± 23 MA, varying similarly to the currents determined by Connerney et al. (2020, https://doi.org/10.1029/2020JA028138) but typically ∼50 MA larger. Of this total, the hot plasma current 158 ± 13 MA is larger than the cold plasma current 109 ± 23 MA, and dominates in the inner region. The cold plasma current typically becomes the larger component beyond ∼35 RJ and exhibits greater orbit-to-orbit variability. The mass outflow rate from Io is the primary driver of magnetodisc current variability. The north-south summed radial magnetosphere-ionosphere coupling current 104 ± 31 MA is typically ∼40% of the total azimuthal current, with variations that are only weakly correlated.