Pier Giorgio Schiavi , Ludovica D'Annibale , Andrea Giacomo Marrani , Francesco Amato , Olga Russina , Silvia Iacobelli , Francesco Mura , Raphael Sieweck , Francesca Pagnanelli , Pietro Altimari
{"title":"从报废锂离子电池中回收石墨并合成氧化石墨烯:热、机械和机械化学预处理的影响","authors":"Pier Giorgio Schiavi , Ludovica D'Annibale , Andrea Giacomo Marrani , Francesco Amato , Olga Russina , Silvia Iacobelli , Francesco Mura , Raphael Sieweck , Francesca Pagnanelli , Pietro Altimari","doi":"10.1016/j.carbon.2025.120295","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates how common pretreatments for recovering black mass from end-of-life (EoL) electric vehicle (EV) lithium-ion batteries (LIBs) influence graphene oxide (GO) synthesis. Black mass was obtained through (i) industrial-scale carbothermal reduction of whole EV battery packs, (ii) industrial-scale mechanical processing, and (iii) lab-scale mechanochemical treatment via reactive ball milling. Characterizations assessed the impact of these pretreatments, along with conventional acid leaching, on graphite properties such as interlayer spacing, oxidation degree, and defectivity—key factors for potential anode reuse. The mechanochemically treated sample achieved an outstanding GO yield of 92 %, whereas other black masses reached up to 30 %. GO yields were further analysed using the Hummers’ method after acid leaching for metal removal. This approach enhanced yields, reaching 96 % for the mechanochemically treated sample and up to 46 % for the others. The improvements were attributed to reduced reagent consumption and the partial exfoliation and oxidation of graphite during leaching. Additionally, lithium intercalation/deintercalation during battery cycling increased GO yield compared to commercial pristine graphite. These findings highlight mechanochemical pretreatment as a promising strategy to integrate high-yield GO production into LIB recycling workflows.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"238 ","pages":"Article 120295"},"PeriodicalIF":10.5000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graphite recovery and synthesis of graphene oxide from end-of-life Li-ion batteries: Impact of thermal, mechanical, and mechanochemical pretreatments\",\"authors\":\"Pier Giorgio Schiavi , Ludovica D'Annibale , Andrea Giacomo Marrani , Francesco Amato , Olga Russina , Silvia Iacobelli , Francesco Mura , Raphael Sieweck , Francesca Pagnanelli , Pietro Altimari\",\"doi\":\"10.1016/j.carbon.2025.120295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates how common pretreatments for recovering black mass from end-of-life (EoL) electric vehicle (EV) lithium-ion batteries (LIBs) influence graphene oxide (GO) synthesis. Black mass was obtained through (i) industrial-scale carbothermal reduction of whole EV battery packs, (ii) industrial-scale mechanical processing, and (iii) lab-scale mechanochemical treatment via reactive ball milling. Characterizations assessed the impact of these pretreatments, along with conventional acid leaching, on graphite properties such as interlayer spacing, oxidation degree, and defectivity—key factors for potential anode reuse. The mechanochemically treated sample achieved an outstanding GO yield of 92 %, whereas other black masses reached up to 30 %. GO yields were further analysed using the Hummers’ method after acid leaching for metal removal. This approach enhanced yields, reaching 96 % for the mechanochemically treated sample and up to 46 % for the others. The improvements were attributed to reduced reagent consumption and the partial exfoliation and oxidation of graphite during leaching. Additionally, lithium intercalation/deintercalation during battery cycling increased GO yield compared to commercial pristine graphite. These findings highlight mechanochemical pretreatment as a promising strategy to integrate high-yield GO production into LIB recycling workflows.</div></div>\",\"PeriodicalId\":262,\"journal\":{\"name\":\"Carbon\",\"volume\":\"238 \",\"pages\":\"Article 120295\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008622325003112\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622325003112","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Graphite recovery and synthesis of graphene oxide from end-of-life Li-ion batteries: Impact of thermal, mechanical, and mechanochemical pretreatments
This study investigates how common pretreatments for recovering black mass from end-of-life (EoL) electric vehicle (EV) lithium-ion batteries (LIBs) influence graphene oxide (GO) synthesis. Black mass was obtained through (i) industrial-scale carbothermal reduction of whole EV battery packs, (ii) industrial-scale mechanical processing, and (iii) lab-scale mechanochemical treatment via reactive ball milling. Characterizations assessed the impact of these pretreatments, along with conventional acid leaching, on graphite properties such as interlayer spacing, oxidation degree, and defectivity—key factors for potential anode reuse. The mechanochemically treated sample achieved an outstanding GO yield of 92 %, whereas other black masses reached up to 30 %. GO yields were further analysed using the Hummers’ method after acid leaching for metal removal. This approach enhanced yields, reaching 96 % for the mechanochemically treated sample and up to 46 % for the others. The improvements were attributed to reduced reagent consumption and the partial exfoliation and oxidation of graphite during leaching. Additionally, lithium intercalation/deintercalation during battery cycling increased GO yield compared to commercial pristine graphite. These findings highlight mechanochemical pretreatment as a promising strategy to integrate high-yield GO production into LIB recycling workflows.
期刊介绍:
The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.