焰火逆排列的格罗滕迪克多项式

IF 1 3区 数学 Q1 MATHEMATICS
Chen-An (Jack) Chou , Tianyi Yu
{"title":"焰火逆排列的格罗滕迪克多项式","authors":"Chen-An (Jack) Chou ,&nbsp;Tianyi Yu","doi":"10.1016/j.ejc.2025.104158","DOIUrl":null,"url":null,"abstract":"<div><div>Pipe dreams are combinatorial objects that compute Grothendieck polynomials. We introduce a new combinatorial object that naturally recasts the pipe dream formula. From this, we obtain the first direct combinatorial formula for the top degree components of Grothendieck polynomials, also known as the Castelnuovo–Mumford polynomials. We also prove the inverse fireworks case of a conjecture of Mészáros, Setiabrata, and St. Dizier on the support of Grothendieck polynomials.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"127 ","pages":"Article 104158"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grothendieck polynomials of inverse fireworks permutations\",\"authors\":\"Chen-An (Jack) Chou ,&nbsp;Tianyi Yu\",\"doi\":\"10.1016/j.ejc.2025.104158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pipe dreams are combinatorial objects that compute Grothendieck polynomials. We introduce a new combinatorial object that naturally recasts the pipe dream formula. From this, we obtain the first direct combinatorial formula for the top degree components of Grothendieck polynomials, also known as the Castelnuovo–Mumford polynomials. We also prove the inverse fireworks case of a conjecture of Mészáros, Setiabrata, and St. Dizier on the support of Grothendieck polynomials.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"127 \",\"pages\":\"Article 104158\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S019566982500040X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S019566982500040X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

白日梦是计算格罗滕迪克多项式的组合对象。我们引入了一个新的组合对象,它自然地重塑了白日梦公式。由此,我们得到了Grothendieck多项式(也称为Castelnuovo-Mumford多项式)的上次分量的第一个直接组合公式。在Grothendieck多项式的支持下,证明了Mészáros、Setiabrata和St. Dizier猜想的逆烟花情形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Grothendieck polynomials of inverse fireworks permutations
Pipe dreams are combinatorial objects that compute Grothendieck polynomials. We introduce a new combinatorial object that naturally recasts the pipe dream formula. From this, we obtain the first direct combinatorial formula for the top degree components of Grothendieck polynomials, also known as the Castelnuovo–Mumford polynomials. We also prove the inverse fireworks case of a conjecture of Mészáros, Setiabrata, and St. Dizier on the support of Grothendieck polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信