Bin Gui , Nan Jiang , Huan Pu, Fanglu Zhong, Xin Huang, Zhiwen Wang, Qianhui Liu, Hao Wang, Yanxiang Zhou, Qing Zhou, Qing Deng
{"title":"基于聚集诱导发射的多功能靶向纳米系统:在近红外-II成像下通过下调热休克蛋白70增强前列腺癌温和光热化疗的协同作用","authors":"Bin Gui , Nan Jiang , Huan Pu, Fanglu Zhong, Xin Huang, Zhiwen Wang, Qianhui Liu, Hao Wang, Yanxiang Zhou, Qing Zhou, Qing Deng","doi":"10.1016/j.colsurfb.2025.114667","DOIUrl":null,"url":null,"abstract":"<div><div>Prostate cancer is the second most common malignancy in men, often presents at advanced stages, where treatment options are limited due to surgical intolerance and resistance to androgen deprivation therapy. Mild photothermal therapy (PTT) at 42–49°C selectively eliminates tumors while sparing normal tissues, but its efficacy is reduced by heat shock protein (HSP70) upregulation, which inhibits apoptosis. To address these limitations, we developed 2TToD@NPs, a multifunctional nanosystem combining second near-infrared (NIR-II) fluorescence imaging, mild PTT, and chemotherapy. The nanosystem, comprising an aggregation-induced emission agent (2TT-oC26B) and doxorubicin (DOX), targets prostate cancer cells via folic acid modification. Upon laser irradiation, 2TT-oC26B generates strong NIR-II fluorescence and thermal energy for imaging and mild PTT. Concurrently, DOX enhances tumor sensitivity to PTT by downregulating HSP70, reduces thermal resistance, induces DNA damage, and generates reactive oxygen species, triggering apoptosis. This synergistic approach overcomes the limitations of single-modality therapies. Our findings suggest that the multifunctional nanosystem effectively integrate precise imaging and targeted therapy, offering a promising strategy for advanced prostate cancer diagnosis and treatment.</div></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"252 ","pages":"Article 114667"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifunctional targeted nanosystem based on aggregation-induced emission: Enhanced synergistic mild-photothermal chemotherapy of prostate cancer via downregulation of heat shock protein 70 under NIR-II imaging\",\"authors\":\"Bin Gui , Nan Jiang , Huan Pu, Fanglu Zhong, Xin Huang, Zhiwen Wang, Qianhui Liu, Hao Wang, Yanxiang Zhou, Qing Zhou, Qing Deng\",\"doi\":\"10.1016/j.colsurfb.2025.114667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Prostate cancer is the second most common malignancy in men, often presents at advanced stages, where treatment options are limited due to surgical intolerance and resistance to androgen deprivation therapy. Mild photothermal therapy (PTT) at 42–49°C selectively eliminates tumors while sparing normal tissues, but its efficacy is reduced by heat shock protein (HSP70) upregulation, which inhibits apoptosis. To address these limitations, we developed 2TToD@NPs, a multifunctional nanosystem combining second near-infrared (NIR-II) fluorescence imaging, mild PTT, and chemotherapy. The nanosystem, comprising an aggregation-induced emission agent (2TT-oC26B) and doxorubicin (DOX), targets prostate cancer cells via folic acid modification. Upon laser irradiation, 2TT-oC26B generates strong NIR-II fluorescence and thermal energy for imaging and mild PTT. Concurrently, DOX enhances tumor sensitivity to PTT by downregulating HSP70, reduces thermal resistance, induces DNA damage, and generates reactive oxygen species, triggering apoptosis. This synergistic approach overcomes the limitations of single-modality therapies. Our findings suggest that the multifunctional nanosystem effectively integrate precise imaging and targeted therapy, offering a promising strategy for advanced prostate cancer diagnosis and treatment.</div></div>\",\"PeriodicalId\":279,\"journal\":{\"name\":\"Colloids and Surfaces B: Biointerfaces\",\"volume\":\"252 \",\"pages\":\"Article 114667\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces B: Biointerfaces\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927776525001742\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776525001742","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Multifunctional targeted nanosystem based on aggregation-induced emission: Enhanced synergistic mild-photothermal chemotherapy of prostate cancer via downregulation of heat shock protein 70 under NIR-II imaging
Prostate cancer is the second most common malignancy in men, often presents at advanced stages, where treatment options are limited due to surgical intolerance and resistance to androgen deprivation therapy. Mild photothermal therapy (PTT) at 42–49°C selectively eliminates tumors while sparing normal tissues, but its efficacy is reduced by heat shock protein (HSP70) upregulation, which inhibits apoptosis. To address these limitations, we developed 2TToD@NPs, a multifunctional nanosystem combining second near-infrared (NIR-II) fluorescence imaging, mild PTT, and chemotherapy. The nanosystem, comprising an aggregation-induced emission agent (2TT-oC26B) and doxorubicin (DOX), targets prostate cancer cells via folic acid modification. Upon laser irradiation, 2TT-oC26B generates strong NIR-II fluorescence and thermal energy for imaging and mild PTT. Concurrently, DOX enhances tumor sensitivity to PTT by downregulating HSP70, reduces thermal resistance, induces DNA damage, and generates reactive oxygen species, triggering apoptosis. This synergistic approach overcomes the limitations of single-modality therapies. Our findings suggest that the multifunctional nanosystem effectively integrate precise imaging and targeted therapy, offering a promising strategy for advanced prostate cancer diagnosis and treatment.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.