通过激素信号转导中的层次基因调控网络揭示桦树的耐镉机制

IF 6.1 2区 生物学 Q1 PLANT SCIENCES
Xianguang Nie , Pengyu Wang , Xianhui Nie , Jingxin Wang , Jingwen Wang , Xiaofu Li , Zhen Tian , Huiyan Guo , Yucheng Wang
{"title":"通过激素信号转导中的层次基因调控网络揭示桦树的耐镉机制","authors":"Xianguang Nie ,&nbsp;Pengyu Wang ,&nbsp;Xianhui Nie ,&nbsp;Jingxin Wang ,&nbsp;Jingwen Wang ,&nbsp;Xiaofu Li ,&nbsp;Zhen Tian ,&nbsp;Huiyan Guo ,&nbsp;Yucheng Wang","doi":"10.1016/j.plaphy.2025.109878","DOIUrl":null,"url":null,"abstract":"<div><div>Cadmium (Cd), a toxic heavy metal, is a significant pollutant that impacts plant productivity. While some studies have been conducted, the underlying mechanisms by which plants respond to Cd stress remain largely unclear. Here, we performed RNA-seq analysis of <em>Betula platyphylla</em> (birch) under CdCl<sub>2</sub> treatment. The findings revealed a substantial enrichment of differentially expressed genes (DEGs) in pathways associated with plant hormones. A gene regulatory network (GRN) was constructed, and the regulatory relationships between genes were determined using a partial correlation coefficient algorithm. The GRN comprises 2,151 regulatory interactions, including 7 transcription factors (TFs) from the first layer, 25 TFs from the second layer, and 168 structural genes from the third layer, all of which are linked to ten enriched biological processes. ChIP-PCR and qRT-PCR assays validated approximately 85.2% of the predicted interactions between the first and second layers, along with 88.3% of the interactions between the second and third layers, supporting the validity of the GRN. Eighteen genes were selected from the third layer of multiple biological pathways to analyze their functions, and the results indicated that these genes can enhance Cd tolerance in birch plants. Additionally, two TFs in the first layer, BpHD-zip7 and BpRAV1, were successfully introduced into birch plants, confirming their role in improving Cd tolerance. Our findings elucidate the regulatory mechanisms and key determinants that function in the adaptation of <em>B. platyphylla</em> to Cd stress.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"223 ","pages":"Article 109878"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling Cadmium Tolerance Mechanisms in Betula platyphylla through a Hierarchical Gene Regulatory Network in Hormone Signaling\",\"authors\":\"Xianguang Nie ,&nbsp;Pengyu Wang ,&nbsp;Xianhui Nie ,&nbsp;Jingxin Wang ,&nbsp;Jingwen Wang ,&nbsp;Xiaofu Li ,&nbsp;Zhen Tian ,&nbsp;Huiyan Guo ,&nbsp;Yucheng Wang\",\"doi\":\"10.1016/j.plaphy.2025.109878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cadmium (Cd), a toxic heavy metal, is a significant pollutant that impacts plant productivity. While some studies have been conducted, the underlying mechanisms by which plants respond to Cd stress remain largely unclear. Here, we performed RNA-seq analysis of <em>Betula platyphylla</em> (birch) under CdCl<sub>2</sub> treatment. The findings revealed a substantial enrichment of differentially expressed genes (DEGs) in pathways associated with plant hormones. A gene regulatory network (GRN) was constructed, and the regulatory relationships between genes were determined using a partial correlation coefficient algorithm. The GRN comprises 2,151 regulatory interactions, including 7 transcription factors (TFs) from the first layer, 25 TFs from the second layer, and 168 structural genes from the third layer, all of which are linked to ten enriched biological processes. ChIP-PCR and qRT-PCR assays validated approximately 85.2% of the predicted interactions between the first and second layers, along with 88.3% of the interactions between the second and third layers, supporting the validity of the GRN. Eighteen genes were selected from the third layer of multiple biological pathways to analyze their functions, and the results indicated that these genes can enhance Cd tolerance in birch plants. Additionally, two TFs in the first layer, BpHD-zip7 and BpRAV1, were successfully introduced into birch plants, confirming their role in improving Cd tolerance. Our findings elucidate the regulatory mechanisms and key determinants that function in the adaptation of <em>B. platyphylla</em> to Cd stress.</div></div>\",\"PeriodicalId\":20234,\"journal\":{\"name\":\"Plant Physiology and Biochemistry\",\"volume\":\"223 \",\"pages\":\"Article 109878\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology and Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0981942825004061\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942825004061","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unraveling Cadmium Tolerance Mechanisms in Betula platyphylla through a Hierarchical Gene Regulatory Network in Hormone Signaling
Cadmium (Cd), a toxic heavy metal, is a significant pollutant that impacts plant productivity. While some studies have been conducted, the underlying mechanisms by which plants respond to Cd stress remain largely unclear. Here, we performed RNA-seq analysis of Betula platyphylla (birch) under CdCl2 treatment. The findings revealed a substantial enrichment of differentially expressed genes (DEGs) in pathways associated with plant hormones. A gene regulatory network (GRN) was constructed, and the regulatory relationships between genes were determined using a partial correlation coefficient algorithm. The GRN comprises 2,151 regulatory interactions, including 7 transcription factors (TFs) from the first layer, 25 TFs from the second layer, and 168 structural genes from the third layer, all of which are linked to ten enriched biological processes. ChIP-PCR and qRT-PCR assays validated approximately 85.2% of the predicted interactions between the first and second layers, along with 88.3% of the interactions between the second and third layers, supporting the validity of the GRN. Eighteen genes were selected from the third layer of multiple biological pathways to analyze their functions, and the results indicated that these genes can enhance Cd tolerance in birch plants. Additionally, two TFs in the first layer, BpHD-zip7 and BpRAV1, were successfully introduced into birch plants, confirming their role in improving Cd tolerance. Our findings elucidate the regulatory mechanisms and key determinants that function in the adaptation of B. platyphylla to Cd stress.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信