Zai Cheng , Jialian Wei , Bin Zhu , Lei Gu , Tuo Zeng , Hongcheng Wang , Xuye Du
{"title":"TaNRAMP5 基因突变影响小麦的镉迁移","authors":"Zai Cheng , Jialian Wei , Bin Zhu , Lei Gu , Tuo Zeng , Hongcheng Wang , Xuye Du","doi":"10.1016/j.plaphy.2025.109879","DOIUrl":null,"url":null,"abstract":"<div><div>Cadmium (Cd) pollution significantly impacts the normal growth, development, and food safety of wheat. Employing modern molecular biology techniques represents an effective strategy for cultivating low-Cd wheat. Natural resistance-associated macrophage protein 5 (NRAMP5) is a critical heavy metal transporter, however, its function in wheat, particularly in response to Cd stress, remains largely unexplored. Here, we employed the CRISPR/Cas9 gene-editing technology to generate <em>TaNRAMP5</em> knockout lines (KO). Cd content in wheat was detected by inductively coupled plasma mass spectrometry (ICP-MS). And RNA sequencing was used to explore the key factors of Cd stress response in wheat. The results indicated that under Cd stress, the KO lines exhibited significantly reduced Cd accumulation in the roots compared to the wild type (WT) plants, while the shoots showed an opposite trend. Notably, the knockout of <em>TaNRAMP5</em> resulted in a 33.46% reduction in Cd concentration in the grains. Furthermore, the knockout of <em>TaNRAMP5</em> led to a decrease in wheat grain yield; however, the application increased amounts of compound fertilizers can mitigate the yield loss associated with the <em>TaNRAMP5</em> mutant. Additionally, transcriptome sequencing revealed significant differences in gene expression profiles between KO and WT plants under Cd stress, particularly in the root samples. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicated that the differently expressed genes (DEGs) induced by Cd stress were primarily involved in processes of “plant hormone signal transduction”, “starch and sucrose metabolism”, and “phenylpropanoid biosynthesis”. Overall, our results suggested that the knockout of <em>TaNRAMP5</em> can effectively reduce Cd accumulation in wheat. These findings may provide a potential genetic basis for the improving of wheat varieties to reduce Cd contamination in grains and ensure food safety.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"223 ","pages":"Article 109879"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mutation of TaNRAMP5 impacts cadmium transport in wheat\",\"authors\":\"Zai Cheng , Jialian Wei , Bin Zhu , Lei Gu , Tuo Zeng , Hongcheng Wang , Xuye Du\",\"doi\":\"10.1016/j.plaphy.2025.109879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cadmium (Cd) pollution significantly impacts the normal growth, development, and food safety of wheat. Employing modern molecular biology techniques represents an effective strategy for cultivating low-Cd wheat. Natural resistance-associated macrophage protein 5 (NRAMP5) is a critical heavy metal transporter, however, its function in wheat, particularly in response to Cd stress, remains largely unexplored. Here, we employed the CRISPR/Cas9 gene-editing technology to generate <em>TaNRAMP5</em> knockout lines (KO). Cd content in wheat was detected by inductively coupled plasma mass spectrometry (ICP-MS). And RNA sequencing was used to explore the key factors of Cd stress response in wheat. The results indicated that under Cd stress, the KO lines exhibited significantly reduced Cd accumulation in the roots compared to the wild type (WT) plants, while the shoots showed an opposite trend. Notably, the knockout of <em>TaNRAMP5</em> resulted in a 33.46% reduction in Cd concentration in the grains. Furthermore, the knockout of <em>TaNRAMP5</em> led to a decrease in wheat grain yield; however, the application increased amounts of compound fertilizers can mitigate the yield loss associated with the <em>TaNRAMP5</em> mutant. Additionally, transcriptome sequencing revealed significant differences in gene expression profiles between KO and WT plants under Cd stress, particularly in the root samples. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicated that the differently expressed genes (DEGs) induced by Cd stress were primarily involved in processes of “plant hormone signal transduction”, “starch and sucrose metabolism”, and “phenylpropanoid biosynthesis”. Overall, our results suggested that the knockout of <em>TaNRAMP5</em> can effectively reduce Cd accumulation in wheat. These findings may provide a potential genetic basis for the improving of wheat varieties to reduce Cd contamination in grains and ensure food safety.</div></div>\",\"PeriodicalId\":20234,\"journal\":{\"name\":\"Plant Physiology and Biochemistry\",\"volume\":\"223 \",\"pages\":\"Article 109879\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology and Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0981942825004073\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942825004073","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Mutation of TaNRAMP5 impacts cadmium transport in wheat
Cadmium (Cd) pollution significantly impacts the normal growth, development, and food safety of wheat. Employing modern molecular biology techniques represents an effective strategy for cultivating low-Cd wheat. Natural resistance-associated macrophage protein 5 (NRAMP5) is a critical heavy metal transporter, however, its function in wheat, particularly in response to Cd stress, remains largely unexplored. Here, we employed the CRISPR/Cas9 gene-editing technology to generate TaNRAMP5 knockout lines (KO). Cd content in wheat was detected by inductively coupled plasma mass spectrometry (ICP-MS). And RNA sequencing was used to explore the key factors of Cd stress response in wheat. The results indicated that under Cd stress, the KO lines exhibited significantly reduced Cd accumulation in the roots compared to the wild type (WT) plants, while the shoots showed an opposite trend. Notably, the knockout of TaNRAMP5 resulted in a 33.46% reduction in Cd concentration in the grains. Furthermore, the knockout of TaNRAMP5 led to a decrease in wheat grain yield; however, the application increased amounts of compound fertilizers can mitigate the yield loss associated with the TaNRAMP5 mutant. Additionally, transcriptome sequencing revealed significant differences in gene expression profiles between KO and WT plants under Cd stress, particularly in the root samples. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicated that the differently expressed genes (DEGs) induced by Cd stress were primarily involved in processes of “plant hormone signal transduction”, “starch and sucrose metabolism”, and “phenylpropanoid biosynthesis”. Overall, our results suggested that the knockout of TaNRAMP5 can effectively reduce Cd accumulation in wheat. These findings may provide a potential genetic basis for the improving of wheat varieties to reduce Cd contamination in grains and ensure food safety.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.