基于异质界面内嵌电场效应的超稳定锌电池弱溶剂化Zn2+溶剂鞘裁剪及脱溶过程

Peng Cai , Mengjun Li , Xin He , Xianbo Zhou , Zhenyu Lei , Haomiao Li , Min Zhou , Wei Wang , Kangli Wang , Kai Jiang
{"title":"基于异质界面内嵌电场效应的超稳定锌电池弱溶剂化Zn2+溶剂鞘裁剪及脱溶过程","authors":"Peng Cai ,&nbsp;Mengjun Li ,&nbsp;Xin He ,&nbsp;Xianbo Zhou ,&nbsp;Zhenyu Lei ,&nbsp;Haomiao Li ,&nbsp;Min Zhou ,&nbsp;Wei Wang ,&nbsp;Kangli Wang ,&nbsp;Kai Jiang","doi":"10.1016/j.apmate.2025.100282","DOIUrl":null,"url":null,"abstract":"<div><div>Solvated zinc ions are prone to undergo desolvation at the electrode/electrolyte interfaces, and unstable H<sub>2</sub>O molecules within the solvated sheaths tend to trigger hydrogen evolution reaction (HER), further accelerating interfaces decay. Herein, we propose for the first time a novel strategy to enhance the interfacial stabilities by in-situ dynamic reconstruction of weakly solvated Zn<sup>2+</sup> during the desolvation processes at heterointerfaces. Theoretical calculations indicate that, due to built-in electric field effects (BEFs), the plating/stripping mechanism shifts from [Zn(H<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup> to [Zn(H<sub>2</sub>O)<sub>5</sub>(SO<sub>4</sub>)<sup>2-</sup>]<sup>2+</sup> without additional electrolyte additives, reducing the solvation ability of H<sub>2</sub>O, enhancing the competitive coordination of SO<sub>4</sub><sup>2−</sup>, essentially eliminating the undesirable side effects of anodes. Hence, symmetric cells can operate stably for 3000 ​h (51.7-times increase in cycle life), and the full cells can operate stably for 5000 cycles (51.5-times increase in cycle life). This study provides valuable insights into the critical design of weakly solvated Zn<sup>2+</sup> and desolvation processes at heterointerfaces.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"4 3","pages":"Article 100282"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring solvation sheath and desolvation processes of weakly solvated Zn2+ through heterointerfaces built-in electric field effects for ultra-stable aqueous zinc batteries\",\"authors\":\"Peng Cai ,&nbsp;Mengjun Li ,&nbsp;Xin He ,&nbsp;Xianbo Zhou ,&nbsp;Zhenyu Lei ,&nbsp;Haomiao Li ,&nbsp;Min Zhou ,&nbsp;Wei Wang ,&nbsp;Kangli Wang ,&nbsp;Kai Jiang\",\"doi\":\"10.1016/j.apmate.2025.100282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Solvated zinc ions are prone to undergo desolvation at the electrode/electrolyte interfaces, and unstable H<sub>2</sub>O molecules within the solvated sheaths tend to trigger hydrogen evolution reaction (HER), further accelerating interfaces decay. Herein, we propose for the first time a novel strategy to enhance the interfacial stabilities by in-situ dynamic reconstruction of weakly solvated Zn<sup>2+</sup> during the desolvation processes at heterointerfaces. Theoretical calculations indicate that, due to built-in electric field effects (BEFs), the plating/stripping mechanism shifts from [Zn(H<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup> to [Zn(H<sub>2</sub>O)<sub>5</sub>(SO<sub>4</sub>)<sup>2-</sup>]<sup>2+</sup> without additional electrolyte additives, reducing the solvation ability of H<sub>2</sub>O, enhancing the competitive coordination of SO<sub>4</sub><sup>2−</sup>, essentially eliminating the undesirable side effects of anodes. Hence, symmetric cells can operate stably for 3000 ​h (51.7-times increase in cycle life), and the full cells can operate stably for 5000 cycles (51.5-times increase in cycle life). This study provides valuable insights into the critical design of weakly solvated Zn<sup>2+</sup> and desolvation processes at heterointerfaces.</div></div>\",\"PeriodicalId\":7283,\"journal\":{\"name\":\"Advanced Powder Materials\",\"volume\":\"4 3\",\"pages\":\"Article 100282\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Powder Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772834X25000181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X25000181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

溶剂化锌离子容易在电极/电解质界面处发生脱溶,且溶剂化鞘层内不稳定的H2O分子容易引发析氢反应(HER),进一步加速界面衰变。本文首次提出了一种新的策略,通过原位动态重建弱溶剂化Zn2+在异质界面上的脱溶过程来增强界面稳定性。理论计算表明,由于内嵌电场效应(BEFs),在没有额外电解质添加剂的情况下,[Zn(H2O)6]2+的电镀/剥离机制转变为[Zn(H2O)5(SO4)2-]2+,降低了H2O的溶剂化能力,增强了SO42−的竞争配位,从根本上消除了阳极的不良副作用。因此,对称电池可以稳定工作3000小时(循环寿命增加51.7倍),完整电池可以稳定工作5000次(循环寿命增加51.5倍)。这项研究为弱溶剂化Zn2+的关键设计和异界面上的脱溶过程提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tailoring solvation sheath and desolvation processes of weakly solvated Zn2+ through heterointerfaces built-in electric field effects for ultra-stable aqueous zinc batteries

Tailoring solvation sheath and desolvation processes of weakly solvated Zn2+ through heterointerfaces built-in electric field effects for ultra-stable aqueous zinc batteries
Solvated zinc ions are prone to undergo desolvation at the electrode/electrolyte interfaces, and unstable H2O molecules within the solvated sheaths tend to trigger hydrogen evolution reaction (HER), further accelerating interfaces decay. Herein, we propose for the first time a novel strategy to enhance the interfacial stabilities by in-situ dynamic reconstruction of weakly solvated Zn2+ during the desolvation processes at heterointerfaces. Theoretical calculations indicate that, due to built-in electric field effects (BEFs), the plating/stripping mechanism shifts from [Zn(H2O)6]2+ to [Zn(H2O)5(SO4)2-]2+ without additional electrolyte additives, reducing the solvation ability of H2O, enhancing the competitive coordination of SO42−, essentially eliminating the undesirable side effects of anodes. Hence, symmetric cells can operate stably for 3000 ​h (51.7-times increase in cycle life), and the full cells can operate stably for 5000 cycles (51.5-times increase in cycle life). This study provides valuable insights into the critical design of weakly solvated Zn2+ and desolvation processes at heterointerfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信