中国系统性风险评估:综合学习和风险溢出网络的新混合方法

IF 4.8 2区 经济学 Q1 BUSINESS, FINANCE
Da Huo , Yongdong Shi , Chao Wang , Lihan Wang , Weize Xing , Mo Yang , Jingjing Zhao
{"title":"中国系统性风险评估:综合学习和风险溢出网络的新混合方法","authors":"Da Huo ,&nbsp;Yongdong Shi ,&nbsp;Chao Wang ,&nbsp;Lihan Wang ,&nbsp;Weize Xing ,&nbsp;Mo Yang ,&nbsp;Jingjing Zhao","doi":"10.1016/j.pacfin.2025.102764","DOIUrl":null,"url":null,"abstract":"<div><div>To address the limitations of traditional systemic risk indices in measuring nonlinearity and network interdependence, we introduce ESRISK, a novel systemic risk measure that incorporates ensemble learning and risk spillover networks. Our approach can effectively analyze the complex nonlinearity in high-dimensional data, enabling more accurate quantification of systemic risk in China's financial system. Comprehensive evaluations reveal that ESRISK outperforms prevailing systemic risk measures, particularly in predictability, accuracy in measuring systemic risk, and effectiveness in early warning detection of systemic events. Moreover, ESRISK demonstrates superior predictive power for macroeconomic downturns. Our findings highlight the importance of applying machine learning methods and considering inter-institutional spillovers when measuring systemic risk in China's financial ecosystem.</div></div>","PeriodicalId":48074,"journal":{"name":"Pacific-Basin Finance Journal","volume":"91 ","pages":"Article 102764"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring systemic risk in China: A new hybrid approach incorporating ensemble learning and risk spillover networks\",\"authors\":\"Da Huo ,&nbsp;Yongdong Shi ,&nbsp;Chao Wang ,&nbsp;Lihan Wang ,&nbsp;Weize Xing ,&nbsp;Mo Yang ,&nbsp;Jingjing Zhao\",\"doi\":\"10.1016/j.pacfin.2025.102764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To address the limitations of traditional systemic risk indices in measuring nonlinearity and network interdependence, we introduce ESRISK, a novel systemic risk measure that incorporates ensemble learning and risk spillover networks. Our approach can effectively analyze the complex nonlinearity in high-dimensional data, enabling more accurate quantification of systemic risk in China's financial system. Comprehensive evaluations reveal that ESRISK outperforms prevailing systemic risk measures, particularly in predictability, accuracy in measuring systemic risk, and effectiveness in early warning detection of systemic events. Moreover, ESRISK demonstrates superior predictive power for macroeconomic downturns. Our findings highlight the importance of applying machine learning methods and considering inter-institutional spillovers when measuring systemic risk in China's financial ecosystem.</div></div>\",\"PeriodicalId\":48074,\"journal\":{\"name\":\"Pacific-Basin Finance Journal\",\"volume\":\"91 \",\"pages\":\"Article 102764\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific-Basin Finance Journal\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927538X25001015\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific-Basin Finance Journal","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927538X25001015","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

为了解决传统系统风险指标在衡量非线性和网络相互依赖性方面的局限性,我们引入了ESRISK,一种结合了集成学习和风险溢出网络的新型系统风险度量方法。我们的方法可以有效地分析高维数据中的复杂非线性,从而更准确地量化中国金融体系的系统性风险。综合评估表明,ESRISK优于现行的系统性风险措施,特别是在可预测性、测量系统性风险的准确性和系统性事件早期预警检测的有效性方面。此外,ESRISK显示出对宏观经济衰退的卓越预测能力。我们的研究结果强调了在衡量中国金融生态系统系统性风险时应用机器学习方法和考虑机构间溢出效应的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measuring systemic risk in China: A new hybrid approach incorporating ensemble learning and risk spillover networks
To address the limitations of traditional systemic risk indices in measuring nonlinearity and network interdependence, we introduce ESRISK, a novel systemic risk measure that incorporates ensemble learning and risk spillover networks. Our approach can effectively analyze the complex nonlinearity in high-dimensional data, enabling more accurate quantification of systemic risk in China's financial system. Comprehensive evaluations reveal that ESRISK outperforms prevailing systemic risk measures, particularly in predictability, accuracy in measuring systemic risk, and effectiveness in early warning detection of systemic events. Moreover, ESRISK demonstrates superior predictive power for macroeconomic downturns. Our findings highlight the importance of applying machine learning methods and considering inter-institutional spillovers when measuring systemic risk in China's financial ecosystem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pacific-Basin Finance Journal
Pacific-Basin Finance Journal BUSINESS, FINANCE-
CiteScore
6.80
自引率
6.50%
发文量
157
期刊介绍: The Pacific-Basin Finance Journal is aimed at providing a specialized forum for the publication of academic research on capital markets of the Asia-Pacific countries. Primary emphasis will be placed on the highest quality empirical and theoretical research in the following areas: • Market Micro-structure; • Investment and Portfolio Management; • Theories of Market Equilibrium; • Valuation of Financial and Real Assets; • Behavior of Asset Prices in Financial Sectors; • Normative Theory of Financial Management; • Capital Markets of Development; • Market Mechanisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信