{"title":"设计一种新型的生态友好型有机/无机系统,用于盐水环境中低碳钢的防腐:电化学和表面研究","authors":"Homa Kahkesh, Behrooz Zargar","doi":"10.1016/j.jiec.2024.11.044","DOIUrl":null,"url":null,"abstract":"<div><div>A novel hybrid inhibitive system based on employing aqueous extract of <em>Allium jesdianum</em> (AEAJ) and zinc cations was designed for corrosion monitoring of mild steel in saline solution. The interaction between AEAJ ingredients and zinc ions was inspected using FT-IR and UV–vis analyses. The performance and mechanism of inhibition were examined via electrochemical techniques. The composition and morphology of the deposited film over the plates were investigated utilizing ATR-FT-IR, SEM/EDS, AFM, and the Raman spectroscopy methods. Due to the unique structure, organic molecules of AEAJ can chelate with zinc ions, forming inhibitor-cation complexes on the surface of mild steel as a high-efficient inhibitive film. Electrochemical results exhibited that the protective film created by combination of 500 ppm AEAJ and 500 ppm Zn<sup>2+</sup> ions had excellent inhibition efficiency (95.75 %) and significant total resistance (48375.4 Ω.cm<sup>2</sup>) after 48 h immersion of mild steel in saline solution, suppressing both anodic and cathodic reactions significantly. The superior synergistic inhibition impact of the utilized inhibitors, along with long-term protection capability (48 h) are regarded as a new horizon in the hybrid inhibitors as a feasible environmental replacement for the low-efficient inhibitors. The outcomes of surface investigations corroborated adsorption of applied organic/inorganic inhibitors on the samples.</div></div>","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"146 ","pages":"Pages 603-620"},"PeriodicalIF":5.9000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing a novel and eco-friendly organic/inorganic system for mild steel corrosion protection in saline environment: Electrochemical and surface studies\",\"authors\":\"Homa Kahkesh, Behrooz Zargar\",\"doi\":\"10.1016/j.jiec.2024.11.044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A novel hybrid inhibitive system based on employing aqueous extract of <em>Allium jesdianum</em> (AEAJ) and zinc cations was designed for corrosion monitoring of mild steel in saline solution. The interaction between AEAJ ingredients and zinc ions was inspected using FT-IR and UV–vis analyses. The performance and mechanism of inhibition were examined via electrochemical techniques. The composition and morphology of the deposited film over the plates were investigated utilizing ATR-FT-IR, SEM/EDS, AFM, and the Raman spectroscopy methods. Due to the unique structure, organic molecules of AEAJ can chelate with zinc ions, forming inhibitor-cation complexes on the surface of mild steel as a high-efficient inhibitive film. Electrochemical results exhibited that the protective film created by combination of 500 ppm AEAJ and 500 ppm Zn<sup>2+</sup> ions had excellent inhibition efficiency (95.75 %) and significant total resistance (48375.4 Ω.cm<sup>2</sup>) after 48 h immersion of mild steel in saline solution, suppressing both anodic and cathodic reactions significantly. The superior synergistic inhibition impact of the utilized inhibitors, along with long-term protection capability (48 h) are regarded as a new horizon in the hybrid inhibitors as a feasible environmental replacement for the low-efficient inhibitors. The outcomes of surface investigations corroborated adsorption of applied organic/inorganic inhibitors on the samples.</div></div>\",\"PeriodicalId\":363,\"journal\":{\"name\":\"Journal of Industrial and Engineering Chemistry\",\"volume\":\"146 \",\"pages\":\"Pages 603-620\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial and Engineering Chemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1226086X24007834\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Engineering Chemistry","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1226086X24007834","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Designing a novel and eco-friendly organic/inorganic system for mild steel corrosion protection in saline environment: Electrochemical and surface studies
A novel hybrid inhibitive system based on employing aqueous extract of Allium jesdianum (AEAJ) and zinc cations was designed for corrosion monitoring of mild steel in saline solution. The interaction between AEAJ ingredients and zinc ions was inspected using FT-IR and UV–vis analyses. The performance and mechanism of inhibition were examined via electrochemical techniques. The composition and morphology of the deposited film over the plates were investigated utilizing ATR-FT-IR, SEM/EDS, AFM, and the Raman spectroscopy methods. Due to the unique structure, organic molecules of AEAJ can chelate with zinc ions, forming inhibitor-cation complexes on the surface of mild steel as a high-efficient inhibitive film. Electrochemical results exhibited that the protective film created by combination of 500 ppm AEAJ and 500 ppm Zn2+ ions had excellent inhibition efficiency (95.75 %) and significant total resistance (48375.4 Ω.cm2) after 48 h immersion of mild steel in saline solution, suppressing both anodic and cathodic reactions significantly. The superior synergistic inhibition impact of the utilized inhibitors, along with long-term protection capability (48 h) are regarded as a new horizon in the hybrid inhibitors as a feasible environmental replacement for the low-efficient inhibitors. The outcomes of surface investigations corroborated adsorption of applied organic/inorganic inhibitors on the samples.
期刊介绍:
Journal of Industrial and Engineering Chemistry is published monthly in English by the Korean Society of Industrial and Engineering Chemistry. JIEC brings together multidisciplinary interests in one journal and is to disseminate information on all aspects of research and development in industrial and engineering chemistry. Contributions in the form of research articles, short communications, notes and reviews are considered for publication. The editors welcome original contributions that have not been and are not to be published elsewhere. Instruction to authors and a manuscript submissions form are printed at the end of each issue. Bulk reprints of individual articles can be ordered. This publication is partially supported by Korea Research Foundation and the Korean Federation of Science and Technology Societies.