{"title":"铂和钯基材料的最新进展综述:从设计策略到反应机制","authors":"Nithyadharseni Palaniyandy , Durai Govindarajan , Lakshmi Devaraj , Ramin Khezri , Karthikkumar Chinnakutti , Sureshkumar Kempahanumakkagari , Ramakrishnappa Thippeswamy , Mabrook S. Amer , Prabhakarn Arunachalam , Abdullah M. Al-Mayouf , Soorathep Kheawhom","doi":"10.1016/j.jiec.2024.11.057","DOIUrl":null,"url":null,"abstract":"<div><div>Due to the growing demand for energy and the threat of environmental problems, advanced energy storage and conversion technologies have attracted considerable attention as alternatives to conventional technologies. Platinum group metals (PGMs), especially platinum (Pt) and palladium (Pd)-based materials, have shown remarkable potential for storage and oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER) due to their high catalytic activity, electrochemically active sites, surface area, permeability, charge transfer resistance, electrical conductivity, and corrosion resistance. However, the scarcity and high price of PGMs hinder their practical application in the commercial sector. Moreover, the availability of PGM electrodes/catalysts with high activity and stable electrochemical performance is critical for developing long-term and cost-effective energy storage/conversion technologies. Therefore, this review focuses on the recent advances in the synthesis strategies for single-atom, alloy-based, and composite Pt and Pd electrocatalysts, their structure-performance relationships, and applications in various energy sectors. The challenges of material stability, cost reduction, and the engineering of highly efficient catalysts, as well as future directions for enhancing their performance in conversion and energy storage technologies such as fuel-cells, metal-air batteries, supercapacitors, hydrogen storage and dye-sensitized solar cells are discussed.</div></div>","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"146 ","pages":"Pages 213-237"},"PeriodicalIF":5.9000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An overview of recent advances in Pt and Pd-based materials: From design strategies to reaction mechanisms\",\"authors\":\"Nithyadharseni Palaniyandy , Durai Govindarajan , Lakshmi Devaraj , Ramin Khezri , Karthikkumar Chinnakutti , Sureshkumar Kempahanumakkagari , Ramakrishnappa Thippeswamy , Mabrook S. Amer , Prabhakarn Arunachalam , Abdullah M. Al-Mayouf , Soorathep Kheawhom\",\"doi\":\"10.1016/j.jiec.2024.11.057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Due to the growing demand for energy and the threat of environmental problems, advanced energy storage and conversion technologies have attracted considerable attention as alternatives to conventional technologies. Platinum group metals (PGMs), especially platinum (Pt) and palladium (Pd)-based materials, have shown remarkable potential for storage and oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER) due to their high catalytic activity, electrochemically active sites, surface area, permeability, charge transfer resistance, electrical conductivity, and corrosion resistance. However, the scarcity and high price of PGMs hinder their practical application in the commercial sector. Moreover, the availability of PGM electrodes/catalysts with high activity and stable electrochemical performance is critical for developing long-term and cost-effective energy storage/conversion technologies. Therefore, this review focuses on the recent advances in the synthesis strategies for single-atom, alloy-based, and composite Pt and Pd electrocatalysts, their structure-performance relationships, and applications in various energy sectors. The challenges of material stability, cost reduction, and the engineering of highly efficient catalysts, as well as future directions for enhancing their performance in conversion and energy storage technologies such as fuel-cells, metal-air batteries, supercapacitors, hydrogen storage and dye-sensitized solar cells are discussed.</div></div>\",\"PeriodicalId\":363,\"journal\":{\"name\":\"Journal of Industrial and Engineering Chemistry\",\"volume\":\"146 \",\"pages\":\"Pages 213-237\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial and Engineering Chemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1226086X24008098\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Engineering Chemistry","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1226086X24008098","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
An overview of recent advances in Pt and Pd-based materials: From design strategies to reaction mechanisms
Due to the growing demand for energy and the threat of environmental problems, advanced energy storage and conversion technologies have attracted considerable attention as alternatives to conventional technologies. Platinum group metals (PGMs), especially platinum (Pt) and palladium (Pd)-based materials, have shown remarkable potential for storage and oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER) due to their high catalytic activity, electrochemically active sites, surface area, permeability, charge transfer resistance, electrical conductivity, and corrosion resistance. However, the scarcity and high price of PGMs hinder their practical application in the commercial sector. Moreover, the availability of PGM electrodes/catalysts with high activity and stable electrochemical performance is critical for developing long-term and cost-effective energy storage/conversion technologies. Therefore, this review focuses on the recent advances in the synthesis strategies for single-atom, alloy-based, and composite Pt and Pd electrocatalysts, their structure-performance relationships, and applications in various energy sectors. The challenges of material stability, cost reduction, and the engineering of highly efficient catalysts, as well as future directions for enhancing their performance in conversion and energy storage technologies such as fuel-cells, metal-air batteries, supercapacitors, hydrogen storage and dye-sensitized solar cells are discussed.
期刊介绍:
Journal of Industrial and Engineering Chemistry is published monthly in English by the Korean Society of Industrial and Engineering Chemistry. JIEC brings together multidisciplinary interests in one journal and is to disseminate information on all aspects of research and development in industrial and engineering chemistry. Contributions in the form of research articles, short communications, notes and reviews are considered for publication. The editors welcome original contributions that have not been and are not to be published elsewhere. Instruction to authors and a manuscript submissions form are printed at the end of each issue. Bulk reprints of individual articles can be ordered. This publication is partially supported by Korea Research Foundation and the Korean Federation of Science and Technology Societies.