{"title":"考虑机械拉伸的电缆附件精确操作特性","authors":"Hao Hu;Xiaodong Li;Weinan Fan;Yunxiao Zhang;Yuhao Liu;Zhidong Jia","doi":"10.1109/TDEI.2024.3524980","DOIUrl":null,"url":null,"abstract":"The electrical property parameters are crucial elements in the design of cable accessories, emphasizing the significance of precisely understanding their operational characteristics. This study investigates the variations in the electrical properties of silicone rubber (SR) insulation under mechanical stretching. The distribution characteristics of relative permittivity and ac breakdown strength are determined based on the mechanical stretching state. Furthermore, the electric field strength and safety margin are calculated to assess the operational capability of cable accessories. Comparatively, the mechanical stretching effects lead to increased electric field strength and breakdown strength, ultimately enhancing the safety margins of cable accessories, with a noticeable impact as the stretching degree increases. These findings suggest that the cable accessories exhibit a higher safety level than initially anticipated and that mechanical stretching should be thoroughly considered in their design.","PeriodicalId":13247,"journal":{"name":"IEEE Transactions on Dielectrics and Electrical Insulation","volume":"32 2","pages":"1246-1249"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precise Operational Characteristics of Cable Accessories Considering Mechanical Stretching\",\"authors\":\"Hao Hu;Xiaodong Li;Weinan Fan;Yunxiao Zhang;Yuhao Liu;Zhidong Jia\",\"doi\":\"10.1109/TDEI.2024.3524980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electrical property parameters are crucial elements in the design of cable accessories, emphasizing the significance of precisely understanding their operational characteristics. This study investigates the variations in the electrical properties of silicone rubber (SR) insulation under mechanical stretching. The distribution characteristics of relative permittivity and ac breakdown strength are determined based on the mechanical stretching state. Furthermore, the electric field strength and safety margin are calculated to assess the operational capability of cable accessories. Comparatively, the mechanical stretching effects lead to increased electric field strength and breakdown strength, ultimately enhancing the safety margins of cable accessories, with a noticeable impact as the stretching degree increases. These findings suggest that the cable accessories exhibit a higher safety level than initially anticipated and that mechanical stretching should be thoroughly considered in their design.\",\"PeriodicalId\":13247,\"journal\":{\"name\":\"IEEE Transactions on Dielectrics and Electrical Insulation\",\"volume\":\"32 2\",\"pages\":\"1246-1249\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Dielectrics and Electrical Insulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10819428/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dielectrics and Electrical Insulation","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10819428/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Precise Operational Characteristics of Cable Accessories Considering Mechanical Stretching
The electrical property parameters are crucial elements in the design of cable accessories, emphasizing the significance of precisely understanding their operational characteristics. This study investigates the variations in the electrical properties of silicone rubber (SR) insulation under mechanical stretching. The distribution characteristics of relative permittivity and ac breakdown strength are determined based on the mechanical stretching state. Furthermore, the electric field strength and safety margin are calculated to assess the operational capability of cable accessories. Comparatively, the mechanical stretching effects lead to increased electric field strength and breakdown strength, ultimately enhancing the safety margins of cable accessories, with a noticeable impact as the stretching degree increases. These findings suggest that the cable accessories exhibit a higher safety level than initially anticipated and that mechanical stretching should be thoroughly considered in their design.
期刊介绍:
Topics that are concerned with dielectric phenomena and measurements, with development and characterization of gaseous, vacuum, liquid and solid electrical insulating materials and systems; and with utilization of these materials in circuits and systems under condition of use.