Tianqi Lu;Saddam Weheabby;Anurag Adiraju;Zongyan Li;Yang Li;Ammar Al-Hamry;Igor A. Pasti;Olfa Kanoun
{"title":"基于纳米银功能化氧化石墨烯与离子液体复合材料的高可靠阻抗传感器检测农药中痕量马拉硫磷","authors":"Tianqi Lu;Saddam Weheabby;Anurag Adiraju;Zongyan Li;Yang Li;Ammar Al-Hamry;Igor A. Pasti;Olfa Kanoun","doi":"10.1109/LSENS.2025.3549518","DOIUrl":null,"url":null,"abstract":"Malathion (MLT), a widely used organophosphate pesticide for global pest control, presents substantial risks to both human health and ecosystems. Therefore, the development of a rapid and efficient detection method is critical to mitigate its harmful effects. This study proposes a novel thin-film impedimetric sensor designed for the reliable detection of MLT pesticide residues based on laser-induced graphene electrodes coated with a sensing composite material comprising graphene oxide, 1-butyl-3-methylimidazolium hexafluorophosphate, and silver nanoparticles. Mechanical and electrochemical stabilities are enhanced by the integration of polyvinyl chloride (PVC) and 2-nitrophenyl octyl ether (o-NPOE) into framework materials. The sensor exhibited excellent sensitivity toward MLT in the concentration range of 1 – 200 nm. The charge transfer resistance R<sub>ct</sub> increases by 304.08% at a concentration of 200 nm. The sensor shows minimal interference and good reproducibility and repeatability. A change in R<sub>ct</sub> of 15.61% over 30 days confirms good stability. Using framework materials enhances the long-term stability by 11.45 times compared to sensors without them. The synergistic effects of the three sensitive materials and the structural support from PVC and o-NPOE enable outstanding detection capabilities. The novel sensor has a high potential for pesticide residue detection in the environment, providing a reliable and efficient tool for preserving ecosystems, supporting sustainable agriculture, and ensuring compliance with environmental regulations.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 4","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly Reliable Impedimetric Sensor Based on Silver Nanoparticle-Functionalized Composites of Graphene Oxide and Ionic Liquid for the Detection of Trace Levels of the Pesticide Malathion\",\"authors\":\"Tianqi Lu;Saddam Weheabby;Anurag Adiraju;Zongyan Li;Yang Li;Ammar Al-Hamry;Igor A. Pasti;Olfa Kanoun\",\"doi\":\"10.1109/LSENS.2025.3549518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Malathion (MLT), a widely used organophosphate pesticide for global pest control, presents substantial risks to both human health and ecosystems. Therefore, the development of a rapid and efficient detection method is critical to mitigate its harmful effects. This study proposes a novel thin-film impedimetric sensor designed for the reliable detection of MLT pesticide residues based on laser-induced graphene electrodes coated with a sensing composite material comprising graphene oxide, 1-butyl-3-methylimidazolium hexafluorophosphate, and silver nanoparticles. Mechanical and electrochemical stabilities are enhanced by the integration of polyvinyl chloride (PVC) and 2-nitrophenyl octyl ether (o-NPOE) into framework materials. The sensor exhibited excellent sensitivity toward MLT in the concentration range of 1 – 200 nm. The charge transfer resistance R<sub>ct</sub> increases by 304.08% at a concentration of 200 nm. The sensor shows minimal interference and good reproducibility and repeatability. A change in R<sub>ct</sub> of 15.61% over 30 days confirms good stability. Using framework materials enhances the long-term stability by 11.45 times compared to sensors without them. The synergistic effects of the three sensitive materials and the structural support from PVC and o-NPOE enable outstanding detection capabilities. The novel sensor has a high potential for pesticide residue detection in the environment, providing a reliable and efficient tool for preserving ecosystems, supporting sustainable agriculture, and ensuring compliance with environmental regulations.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"9 4\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10918778/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10918778/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Highly Reliable Impedimetric Sensor Based on Silver Nanoparticle-Functionalized Composites of Graphene Oxide and Ionic Liquid for the Detection of Trace Levels of the Pesticide Malathion
Malathion (MLT), a widely used organophosphate pesticide for global pest control, presents substantial risks to both human health and ecosystems. Therefore, the development of a rapid and efficient detection method is critical to mitigate its harmful effects. This study proposes a novel thin-film impedimetric sensor designed for the reliable detection of MLT pesticide residues based on laser-induced graphene electrodes coated with a sensing composite material comprising graphene oxide, 1-butyl-3-methylimidazolium hexafluorophosphate, and silver nanoparticles. Mechanical and electrochemical stabilities are enhanced by the integration of polyvinyl chloride (PVC) and 2-nitrophenyl octyl ether (o-NPOE) into framework materials. The sensor exhibited excellent sensitivity toward MLT in the concentration range of 1 – 200 nm. The charge transfer resistance Rct increases by 304.08% at a concentration of 200 nm. The sensor shows minimal interference and good reproducibility and repeatability. A change in Rct of 15.61% over 30 days confirms good stability. Using framework materials enhances the long-term stability by 11.45 times compared to sensors without them. The synergistic effects of the three sensitive materials and the structural support from PVC and o-NPOE enable outstanding detection capabilities. The novel sensor has a high potential for pesticide residue detection in the environment, providing a reliable and efficient tool for preserving ecosystems, supporting sustainable agriculture, and ensuring compliance with environmental regulations.