一维量子晶格模型中二元性的低深度单元量子电路

IF 9 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Laurens Lootens, Clement Delcamp, Dominic Williamson, Frank Verstraete
{"title":"一维量子晶格模型中二元性的低深度单元量子电路","authors":"Laurens Lootens, Clement Delcamp, Dominic Williamson, Frank Verstraete","doi":"10.1103/physrevlett.134.130403","DOIUrl":null,"url":null,"abstract":"A systematic approach to dualities in symmetric (</a:mo>1</a:mn>+</a:mo>1</a:mn>)</a:mo>d</a:mi></a:mrow></a:math> quantum lattice models has recently been proposed in terms of module categories over the symmetry fusion categories. By characterizing the nontrivial way in which dualities intertwine closed boundary conditions and charge sectors, these can be implemented by unitary matrix product operators. In this Letter, we explain how to turn such duality operators into unitary linear depth quantum circuits via the introduction of ancillary degrees of freedom that keep track of the various sectors. The linear depth is consistent with the fact that these dualities change the phase of the states on which they act. When supplemented with measurements, we show that dualities with respect to symmetries encoded into nilpotent fusion categories can be realized in constant depth. The resulting circuits can for instance be used to efficiently prepare short- and long-range entangled states or map between different gapped boundaries of <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><f:mrow><f:mo stretchy=\"false\">(</f:mo><f:mn>2</f:mn><f:mo>+</f:mo><f:mn>1</f:mn><f:mo stretchy=\"false\">)</f:mo><f:mi mathvariant=\"normal\">d</f:mi></f:mrow></f:math> topological models. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"34 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Depth Unitary Quantum Circuits for Dualities in One-Dimensional Quantum Lattice Models\",\"authors\":\"Laurens Lootens, Clement Delcamp, Dominic Williamson, Frank Verstraete\",\"doi\":\"10.1103/physrevlett.134.130403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A systematic approach to dualities in symmetric (</a:mo>1</a:mn>+</a:mo>1</a:mn>)</a:mo>d</a:mi></a:mrow></a:math> quantum lattice models has recently been proposed in terms of module categories over the symmetry fusion categories. By characterizing the nontrivial way in which dualities intertwine closed boundary conditions and charge sectors, these can be implemented by unitary matrix product operators. In this Letter, we explain how to turn such duality operators into unitary linear depth quantum circuits via the introduction of ancillary degrees of freedom that keep track of the various sectors. The linear depth is consistent with the fact that these dualities change the phase of the states on which they act. When supplemented with measurements, we show that dualities with respect to symmetries encoded into nilpotent fusion categories can be realized in constant depth. The resulting circuits can for instance be used to efficiently prepare short- and long-range entangled states or map between different gapped boundaries of <f:math xmlns:f=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><f:mrow><f:mo stretchy=\\\"false\\\">(</f:mo><f:mn>2</f:mn><f:mo>+</f:mo><f:mn>1</f:mn><f:mo stretchy=\\\"false\\\">)</f:mo><f:mi mathvariant=\\\"normal\\\">d</f:mi></f:mrow></f:math> topological models. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20069,\"journal\":{\"name\":\"Physical review letters\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevlett.134.130403\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.130403","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在对称融合范畴的模范畴方面,提出了对称(1+1)d量子晶格模型对偶性的系统方法。通过描述对偶交织封闭边界条件和电荷扇区的非平凡方式,这些可以用酉矩阵乘积算子来实现。在这封信中,我们解释了如何通过引入跟踪各个扇区的辅助自由度将这种对偶算子转化为幺正线性深度量子电路。线性深度与这样一个事实是一致的,即这些二元性改变了它们所作用的状态的相位。当补充测量时,我们证明了关于编码为幂零融合类别的对称性的对偶性可以在恒定深度下实现。例如,所得到的电路可用于有效地制备短距离和远距离纠缠态,或在(2+1)d拓扑模型的不同间隙边界之间进行映射。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-Depth Unitary Quantum Circuits for Dualities in One-Dimensional Quantum Lattice Models
A systematic approach to dualities in symmetric (1+1)d quantum lattice models has recently been proposed in terms of module categories over the symmetry fusion categories. By characterizing the nontrivial way in which dualities intertwine closed boundary conditions and charge sectors, these can be implemented by unitary matrix product operators. In this Letter, we explain how to turn such duality operators into unitary linear depth quantum circuits via the introduction of ancillary degrees of freedom that keep track of the various sectors. The linear depth is consistent with the fact that these dualities change the phase of the states on which they act. When supplemented with measurements, we show that dualities with respect to symmetries encoded into nilpotent fusion categories can be realized in constant depth. The resulting circuits can for instance be used to efficiently prepare short- and long-range entangled states or map between different gapped boundaries of (2+1)d topological models. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信