Jun Li, Lili Li, Weiqiang Liang, Lingyu Li, Ruya Wang, Zhenhua Wang, Chunxia Ma
{"title":"Spatial multi-omics analysis of metabolic heterogeneity in zebrafish exposed to microcystin-LR and its disinfection byproducts","authors":"Jun Li, Lili Li, Weiqiang Liang, Lingyu Li, Ruya Wang, Zhenhua Wang, Chunxia Ma","doi":"10.1016/j.watres.2025.123599","DOIUrl":null,"url":null,"abstract":"Most studies on the biological effects of exogenous pollutants have focused on whole samples or cell populations, and lack spatial heterogeneity consideration due to technical limitations. Microcystin-LR (MC-LR) from cyanobacterial blooms threatens ecosystems and human health, while microcystin-LR disinfection by-products (MCLR-DBPs) in drinking water remain a concern for their toxin-like structure. This study introduces spatial multi-omics to investigate the disruptions caused by ingestion of MC-LR and MCLR-DBPs in zebrafish. The method integrates metabolomics, spatial metabolomics, and spatial transcriptomics to characterize the overall metabolic changes in whole zebrafish caused by MC-LR and MCLR-DBPs, then provides further insight into the variation of spatial distribution of metabolites and genes in MC-LR and MCLR-DBPs targeted organ. The results showed that MC-LR and MCLR-DBPs induced oxidative stress and metabolic imbalance, and disrupted the physiological homeostasis of zebrafish. Spatial multi-omics analysis further revealed that MC-LR and MCLR-DBPs exacerbate disruptions in energy and lipid metabolism, methylation processes, and immune pathways by modulating the expression of genes such as <em>gatm, gnmt, cyp2p9</em>, and <em>tdo2b</em>. In conclusion, this study developed a spatial multi-omics approach that not only enhances the understanding of the biological effects of MC-LR and MCLR-DBPs but also provides robust technical support for investigating other environmental pollutants.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"4 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.123599","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Spatial multi-omics analysis of metabolic heterogeneity in zebrafish exposed to microcystin-LR and its disinfection byproducts
Most studies on the biological effects of exogenous pollutants have focused on whole samples or cell populations, and lack spatial heterogeneity consideration due to technical limitations. Microcystin-LR (MC-LR) from cyanobacterial blooms threatens ecosystems and human health, while microcystin-LR disinfection by-products (MCLR-DBPs) in drinking water remain a concern for their toxin-like structure. This study introduces spatial multi-omics to investigate the disruptions caused by ingestion of MC-LR and MCLR-DBPs in zebrafish. The method integrates metabolomics, spatial metabolomics, and spatial transcriptomics to characterize the overall metabolic changes in whole zebrafish caused by MC-LR and MCLR-DBPs, then provides further insight into the variation of spatial distribution of metabolites and genes in MC-LR and MCLR-DBPs targeted organ. The results showed that MC-LR and MCLR-DBPs induced oxidative stress and metabolic imbalance, and disrupted the physiological homeostasis of zebrafish. Spatial multi-omics analysis further revealed that MC-LR and MCLR-DBPs exacerbate disruptions in energy and lipid metabolism, methylation processes, and immune pathways by modulating the expression of genes such as gatm, gnmt, cyp2p9, and tdo2b. In conclusion, this study developed a spatial multi-omics approach that not only enhances the understanding of the biological effects of MC-LR and MCLR-DBPs but also provides robust technical support for investigating other environmental pollutants.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.