IF 4.1 2区 工程技术 Q2 ENGINEERING, CHEMICAL
Ratchadaporn Kueasook, Peixin Wang, Hongyu Chen, Peng He, Zheng Zeng, Xiang Xu, Liqing Li
{"title":"Solvent-free one-step simple synthesis of N, O-doped microporous carbon using K2CO3 as an activation agent and their application to CO2 capture: Synergistic effect of pore structure and nitrogen–oxygen functional groups","authors":"Ratchadaporn Kueasook,&nbsp;Peixin Wang,&nbsp;Hongyu Chen,&nbsp;Peng He,&nbsp;Zheng Zeng,&nbsp;Xiang Xu,&nbsp;Liqing Li","doi":"10.1016/j.ces.2025.121615","DOIUrl":null,"url":null,"abstract":"<div><div>Preparing N, O-doped microporous carbons requires a multi-step process, which is expensive and time-consuming. The preparation methods presented in this work are easy, solvent-free, and more sustainable, using sugarcane bagasse as a carbon precursor, melamine as a nitrogen source, potassium carbonate as an activator, and carbonization at a low temperature. The prepared carbons (BMK-1) showed the highest CO<sub>2</sub> adsorption performance (3.24 mmol/g at 25°C and 4.90 mmol/g at 0°C, 1 bar). An in-depth study was performed to analyze the influence of narrow micropores<!--> <!-->with different pore ranges and nitrogen–oxygen atoms doping on CO<sub>2</sub> adsorption performance. GCMC simulations and weak interaction analyses showed that a pore size of<!--> <!-->approximately 0.7 nm is suitable for CO<sub>2</sub> adsorption. The existence of nitrogen–oxygen groups enhanced the Van der Waal interaction between samples and CO<sub>2</sub> molecules. It showed that the pore structure and nitrogen–oxygen group are synergistic factors contributing to CO<sub>2</sub> adsorption properties.</div></div>","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"311 ","pages":"Article 121615"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009250925004385","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

制备掺杂 N、O 的微孔碳需要经过多个步骤,既昂贵又耗时。本文介绍的制备方法以甘蔗渣为碳前驱体、三聚氰胺为氮源、碳酸钾为活化剂,并在低温下进行碳化,简单易行、无溶剂且更具可持续性。制备的碳(BMK-1)显示出最高的二氧化碳吸附性能(25°C 时为 3.24 mmol/g,0°C、1 巴时为 4.90 mmol/g)。深入研究分析了不同孔径范围的窄微孔和氮氧原子掺杂对二氧化碳吸附性能的影响。GCMC 模拟和弱相互作用分析表明,孔径约为 0.7 nm 的微孔适合吸附二氧化碳。氮氧基团的存在增强了样品与二氧化碳分子之间的范德华相互作用。这表明孔隙结构和氮氧基团是影响二氧化碳吸附特性的协同因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Solvent-free one-step simple synthesis of N, O-doped microporous carbon using K2CO3 as an activation agent and their application to CO2 capture: Synergistic effect of pore structure and nitrogen–oxygen functional groups

Solvent-free one-step simple synthesis of N, O-doped microporous carbon using K2CO3 as an activation agent and their application to CO2 capture: Synergistic effect of pore structure and nitrogen–oxygen functional groups

Solvent-free one-step simple synthesis of N, O-doped microporous carbon using K2CO3 as an activation agent and their application to CO2 capture: Synergistic effect of pore structure and nitrogen–oxygen functional groups
Preparing N, O-doped microporous carbons requires a multi-step process, which is expensive and time-consuming. The preparation methods presented in this work are easy, solvent-free, and more sustainable, using sugarcane bagasse as a carbon precursor, melamine as a nitrogen source, potassium carbonate as an activator, and carbonization at a low temperature. The prepared carbons (BMK-1) showed the highest CO2 adsorption performance (3.24 mmol/g at 25°C and 4.90 mmol/g at 0°C, 1 bar). An in-depth study was performed to analyze the influence of narrow micropores with different pore ranges and nitrogen–oxygen atoms doping on CO2 adsorption performance. GCMC simulations and weak interaction analyses showed that a pore size of approximately 0.7 nm is suitable for CO2 adsorption. The existence of nitrogen–oxygen groups enhanced the Van der Waal interaction between samples and CO2 molecules. It showed that the pore structure and nitrogen–oxygen group are synergistic factors contributing to CO2 adsorption properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Science
Chemical Engineering Science 工程技术-工程:化工
CiteScore
7.50
自引率
8.50%
发文量
1025
审稿时长
50 days
期刊介绍: Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline. Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信