{"title":"通过月球射电观测超高能中微子和中微子级联的影响探测超重暗物质","authors":"Saikat Das, Jose Alonso Carpio, Kohta Murase","doi":"10.1103/physrevd.111.083007","DOIUrl":null,"url":null,"abstract":"Ultrahigh-energy neutrinos (UHE</a:mi>ν</a:mi></a:mrow></a:math>s) can be used as a valuable probe of superheavy dark matter above <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mo>∼</c:mo><c:msup><c:mn>10</c:mn><c:mn>9</c:mn></c:msup><c:mtext> </c:mtext><c:mtext> </c:mtext><c:mi>GeV</c:mi></c:math>, the latter being difficult to probe with collider and direct detection experiments due to the feebly interacting nature. Searching for radio emissions originating from the interaction of <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>UHE</e:mi><e:mi>ν</e:mi></e:math>s with the lunar regolith enables us to explore energies beyond <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:msup><g:mn>10</g:mn><g:mn>12</g:mn></g:msup><g:mtext> </g:mtext><g:mtext> </g:mtext><g:mi>GeV</g:mi></g:math>, which astrophysical accelerators cannot achieve. Taking into account the interaction of <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mi>UHE</i:mi><i:mi>ν</i:mi></i:math>s with the cosmic neutrino background and resulting standard neutrino cascades to calculate the neutrino flux on Earth, for the first time, we investigate sensitivities of such lunar radio observations to very heavy dark matter. We also examine the impacts of cosmogenic neutrinos that have the astrophysical origin. We show that the proposed ultralong wavelength lunar radio telescope, as well as the existing low-frequency array, can provide the most stringent constraints on decaying or annihilating superheavy dark matter with masses at <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mo>≳</k:mo><k:msup><k:mn>10</k:mn><k:mn>12</k:mn></k:msup><k:mtext> </k:mtext><k:mtext> </k:mtext><k:mi>GeV</k:mi></k:math>. The limits are complementary to or even stronger than those from other <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mi>UHE</m:mi><m:mi>ν</m:mi></m:math> detectors, such as the IceCube-Gen2 radio array and the Giant Radio Array for Neutrino Detection. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"6 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing superheavy dark matter through lunar radio observations of ultrahigh-energy neutrinos and the impacts of neutrino cascades\",\"authors\":\"Saikat Das, Jose Alonso Carpio, Kohta Murase\",\"doi\":\"10.1103/physrevd.111.083007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultrahigh-energy neutrinos (UHE</a:mi>ν</a:mi></a:mrow></a:math>s) can be used as a valuable probe of superheavy dark matter above <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:mo>∼</c:mo><c:msup><c:mn>10</c:mn><c:mn>9</c:mn></c:msup><c:mtext> </c:mtext><c:mtext> </c:mtext><c:mi>GeV</c:mi></c:math>, the latter being difficult to probe with collider and direct detection experiments due to the feebly interacting nature. Searching for radio emissions originating from the interaction of <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:mi>UHE</e:mi><e:mi>ν</e:mi></e:math>s with the lunar regolith enables us to explore energies beyond <g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><g:msup><g:mn>10</g:mn><g:mn>12</g:mn></g:msup><g:mtext> </g:mtext><g:mtext> </g:mtext><g:mi>GeV</g:mi></g:math>, which astrophysical accelerators cannot achieve. Taking into account the interaction of <i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><i:mi>UHE</i:mi><i:mi>ν</i:mi></i:math>s with the cosmic neutrino background and resulting standard neutrino cascades to calculate the neutrino flux on Earth, for the first time, we investigate sensitivities of such lunar radio observations to very heavy dark matter. We also examine the impacts of cosmogenic neutrinos that have the astrophysical origin. We show that the proposed ultralong wavelength lunar radio telescope, as well as the existing low-frequency array, can provide the most stringent constraints on decaying or annihilating superheavy dark matter with masses at <k:math xmlns:k=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><k:mo>≳</k:mo><k:msup><k:mn>10</k:mn><k:mn>12</k:mn></k:msup><k:mtext> </k:mtext><k:mtext> </k:mtext><k:mi>GeV</k:mi></k:math>. The limits are complementary to or even stronger than those from other <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><m:mi>UHE</m:mi><m:mi>ν</m:mi></m:math> detectors, such as the IceCube-Gen2 radio array and the Giant Radio Array for Neutrino Detection. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.083007\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.083007","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Probing superheavy dark matter through lunar radio observations of ultrahigh-energy neutrinos and the impacts of neutrino cascades
Ultrahigh-energy neutrinos (UHEνs) can be used as a valuable probe of superheavy dark matter above ∼109GeV, the latter being difficult to probe with collider and direct detection experiments due to the feebly interacting nature. Searching for radio emissions originating from the interaction of UHEνs with the lunar regolith enables us to explore energies beyond 1012GeV, which astrophysical accelerators cannot achieve. Taking into account the interaction of UHEνs with the cosmic neutrino background and resulting standard neutrino cascades to calculate the neutrino flux on Earth, for the first time, we investigate sensitivities of such lunar radio observations to very heavy dark matter. We also examine the impacts of cosmogenic neutrinos that have the astrophysical origin. We show that the proposed ultralong wavelength lunar radio telescope, as well as the existing low-frequency array, can provide the most stringent constraints on decaying or annihilating superheavy dark matter with masses at ≳1012GeV. The limits are complementary to or even stronger than those from other UHEν detectors, such as the IceCube-Gen2 radio array and the Giant Radio Array for Neutrino Detection. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.