通过月球射电观测超高能中微子和中微子级联的影响探测超重暗物质

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy
Saikat Das, Jose Alonso Carpio, Kohta Murase
{"title":"通过月球射电观测超高能中微子和中微子级联的影响探测超重暗物质","authors":"Saikat Das, Jose Alonso Carpio, Kohta Murase","doi":"10.1103/physrevd.111.083007","DOIUrl":null,"url":null,"abstract":"Ultrahigh-energy neutrinos (UHE</a:mi>ν</a:mi></a:mrow></a:math>s) can be used as a valuable probe of superheavy dark matter above <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mo>∼</c:mo><c:msup><c:mn>10</c:mn><c:mn>9</c:mn></c:msup><c:mtext> </c:mtext><c:mtext> </c:mtext><c:mi>GeV</c:mi></c:math>, the latter being difficult to probe with collider and direct detection experiments due to the feebly interacting nature. Searching for radio emissions originating from the interaction of <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>UHE</e:mi><e:mi>ν</e:mi></e:math>s with the lunar regolith enables us to explore energies beyond <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:msup><g:mn>10</g:mn><g:mn>12</g:mn></g:msup><g:mtext> </g:mtext><g:mtext> </g:mtext><g:mi>GeV</g:mi></g:math>, which astrophysical accelerators cannot achieve. Taking into account the interaction of <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mi>UHE</i:mi><i:mi>ν</i:mi></i:math>s with the cosmic neutrino background and resulting standard neutrino cascades to calculate the neutrino flux on Earth, for the first time, we investigate sensitivities of such lunar radio observations to very heavy dark matter. We also examine the impacts of cosmogenic neutrinos that have the astrophysical origin. We show that the proposed ultralong wavelength lunar radio telescope, as well as the existing low-frequency array, can provide the most stringent constraints on decaying or annihilating superheavy dark matter with masses at <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mo>≳</k:mo><k:msup><k:mn>10</k:mn><k:mn>12</k:mn></k:msup><k:mtext> </k:mtext><k:mtext> </k:mtext><k:mi>GeV</k:mi></k:math>. The limits are complementary to or even stronger than those from other <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mi>UHE</m:mi><m:mi>ν</m:mi></m:math> detectors, such as the IceCube-Gen2 radio array and the Giant Radio Array for Neutrino Detection. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"6 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing superheavy dark matter through lunar radio observations of ultrahigh-energy neutrinos and the impacts of neutrino cascades\",\"authors\":\"Saikat Das, Jose Alonso Carpio, Kohta Murase\",\"doi\":\"10.1103/physrevd.111.083007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultrahigh-energy neutrinos (UHE</a:mi>ν</a:mi></a:mrow></a:math>s) can be used as a valuable probe of superheavy dark matter above <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:mo>∼</c:mo><c:msup><c:mn>10</c:mn><c:mn>9</c:mn></c:msup><c:mtext> </c:mtext><c:mtext> </c:mtext><c:mi>GeV</c:mi></c:math>, the latter being difficult to probe with collider and direct detection experiments due to the feebly interacting nature. Searching for radio emissions originating from the interaction of <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:mi>UHE</e:mi><e:mi>ν</e:mi></e:math>s with the lunar regolith enables us to explore energies beyond <g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><g:msup><g:mn>10</g:mn><g:mn>12</g:mn></g:msup><g:mtext> </g:mtext><g:mtext> </g:mtext><g:mi>GeV</g:mi></g:math>, which astrophysical accelerators cannot achieve. Taking into account the interaction of <i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><i:mi>UHE</i:mi><i:mi>ν</i:mi></i:math>s with the cosmic neutrino background and resulting standard neutrino cascades to calculate the neutrino flux on Earth, for the first time, we investigate sensitivities of such lunar radio observations to very heavy dark matter. We also examine the impacts of cosmogenic neutrinos that have the astrophysical origin. We show that the proposed ultralong wavelength lunar radio telescope, as well as the existing low-frequency array, can provide the most stringent constraints on decaying or annihilating superheavy dark matter with masses at <k:math xmlns:k=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><k:mo>≳</k:mo><k:msup><k:mn>10</k:mn><k:mn>12</k:mn></k:msup><k:mtext> </k:mtext><k:mtext> </k:mtext><k:mi>GeV</k:mi></k:math>. The limits are complementary to or even stronger than those from other <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><m:mi>UHE</m:mi><m:mi>ν</m:mi></m:math> detectors, such as the IceCube-Gen2 radio array and the Giant Radio Array for Neutrino Detection. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.083007\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.083007","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probing superheavy dark matter through lunar radio observations of ultrahigh-energy neutrinos and the impacts of neutrino cascades
Ultrahigh-energy neutrinos (UHEνs) can be used as a valuable probe of superheavy dark matter above 109 GeV, the latter being difficult to probe with collider and direct detection experiments due to the feebly interacting nature. Searching for radio emissions originating from the interaction of UHEνs with the lunar regolith enables us to explore energies beyond 1012 GeV, which astrophysical accelerators cannot achieve. Taking into account the interaction of UHEνs with the cosmic neutrino background and resulting standard neutrino cascades to calculate the neutrino flux on Earth, for the first time, we investigate sensitivities of such lunar radio observations to very heavy dark matter. We also examine the impacts of cosmogenic neutrinos that have the astrophysical origin. We show that the proposed ultralong wavelength lunar radio telescope, as well as the existing low-frequency array, can provide the most stringent constraints on decaying or annihilating superheavy dark matter with masses at 1012 GeV. The limits are complementary to or even stronger than those from other UHEν detectors, such as the IceCube-Gen2 radio array and the Giant Radio Array for Neutrino Detection. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信