用于高性能金属锂电池的高放电深度抗金属疲劳锂薄箔

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Xuyan Ni, Jinqiu Zhou, Kecheng Long, Shaozhen Huang, Yihuan Zhou, Zhenkang Wang, Yiwei Zheng, Tianshu Zhang, Tao Qian, Chenglin Yan, Libao Chen
{"title":"用于高性能金属锂电池的高放电深度抗金属疲劳锂薄箔","authors":"Xuyan Ni, Jinqiu Zhou, Kecheng Long, Shaozhen Huang, Yihuan Zhou, Zhenkang Wang, Yiwei Zheng, Tianshu Zhang, Tao Qian, Chenglin Yan, Libao Chen","doi":"10.1016/j.ensm.2025.104238","DOIUrl":null,"url":null,"abstract":"In Li metal batteries, due to the inadequate resistance to metal fatigue of existing Li foil to withstand the severe strain during charge-discharge cycles, the Li anode is prone to pulverization, which can lead to short circuits or rapid capacity decay of batteries. This issue is further exacerbated in practical high-energy-density batteries that require high discharge depth conditions. To overcome it, a metal-fatigue-resistant thin Li (RMFLi) foil with a stable skeleton has been fabricated by employing a cyclic extrusion compression technique. This RMFLi possesses better metal fatigue resistance than pure Li, maintaining its integrity under cyclic stress and strain without cracking or fracturing. Both finite element simulations (FES) and microscopic morphological characterization provide evidence that the excellent mechanical properties of RMFLi, specifically its resistance to metal fatigue, play a significant role in facilitating controlled dense deposition of Li ions and ensure electrochemical stability of the anode during cycling. Impressively, thanks to its high fatigue resistance and stable skeleton, the RMFLi foil achieves long-term stable cycling even at a discharge depth of up to 90.3%. When paired with high-load lithium iron phosphate (LFP) and S cathodes in full cells, it achieves stable cycling for 1000 and 600 cycles, respectively. It's worth noting that the Li-S pouch cell utilizing this RMFLi foil exhibits high energy density of 391.4 Wh kg<sup>−1</sup> and can cycle stably for 80 cycles. This study provides a scalable mechanical preparation method with tremendous expansion possibilities for manufacturing metal-fatigue-resistant thin Li foils.","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"157 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metal-fatigue-resistant thin lithium foil with high depth of discharge for high-performance lithium metal batteries\",\"authors\":\"Xuyan Ni, Jinqiu Zhou, Kecheng Long, Shaozhen Huang, Yihuan Zhou, Zhenkang Wang, Yiwei Zheng, Tianshu Zhang, Tao Qian, Chenglin Yan, Libao Chen\",\"doi\":\"10.1016/j.ensm.2025.104238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Li metal batteries, due to the inadequate resistance to metal fatigue of existing Li foil to withstand the severe strain during charge-discharge cycles, the Li anode is prone to pulverization, which can lead to short circuits or rapid capacity decay of batteries. This issue is further exacerbated in practical high-energy-density batteries that require high discharge depth conditions. To overcome it, a metal-fatigue-resistant thin Li (RMFLi) foil with a stable skeleton has been fabricated by employing a cyclic extrusion compression technique. This RMFLi possesses better metal fatigue resistance than pure Li, maintaining its integrity under cyclic stress and strain without cracking or fracturing. Both finite element simulations (FES) and microscopic morphological characterization provide evidence that the excellent mechanical properties of RMFLi, specifically its resistance to metal fatigue, play a significant role in facilitating controlled dense deposition of Li ions and ensure electrochemical stability of the anode during cycling. Impressively, thanks to its high fatigue resistance and stable skeleton, the RMFLi foil achieves long-term stable cycling even at a discharge depth of up to 90.3%. When paired with high-load lithium iron phosphate (LFP) and S cathodes in full cells, it achieves stable cycling for 1000 and 600 cycles, respectively. It's worth noting that the Li-S pouch cell utilizing this RMFLi foil exhibits high energy density of 391.4 Wh kg<sup>−1</sup> and can cycle stably for 80 cycles. This study provides a scalable mechanical preparation method with tremendous expansion possibilities for manufacturing metal-fatigue-resistant thin Li foils.\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":\"157 1\",\"pages\":\"\"},\"PeriodicalIF\":18.9000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ensm.2025.104238\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ensm.2025.104238","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metal-fatigue-resistant thin lithium foil with high depth of discharge for high-performance lithium metal batteries
In Li metal batteries, due to the inadequate resistance to metal fatigue of existing Li foil to withstand the severe strain during charge-discharge cycles, the Li anode is prone to pulverization, which can lead to short circuits or rapid capacity decay of batteries. This issue is further exacerbated in practical high-energy-density batteries that require high discharge depth conditions. To overcome it, a metal-fatigue-resistant thin Li (RMFLi) foil with a stable skeleton has been fabricated by employing a cyclic extrusion compression technique. This RMFLi possesses better metal fatigue resistance than pure Li, maintaining its integrity under cyclic stress and strain without cracking or fracturing. Both finite element simulations (FES) and microscopic morphological characterization provide evidence that the excellent mechanical properties of RMFLi, specifically its resistance to metal fatigue, play a significant role in facilitating controlled dense deposition of Li ions and ensure electrochemical stability of the anode during cycling. Impressively, thanks to its high fatigue resistance and stable skeleton, the RMFLi foil achieves long-term stable cycling even at a discharge depth of up to 90.3%. When paired with high-load lithium iron phosphate (LFP) and S cathodes in full cells, it achieves stable cycling for 1000 and 600 cycles, respectively. It's worth noting that the Li-S pouch cell utilizing this RMFLi foil exhibits high energy density of 391.4 Wh kg−1 and can cycle stably for 80 cycles. This study provides a scalable mechanical preparation method with tremendous expansion possibilities for manufacturing metal-fatigue-resistant thin Li foils.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信