大基因组、广宿主范围弧菌噬菌体的适应性基因组可塑性

Charles Bernard, Yannick Labreuche, Carine Diarra, Pauline Daszkowski, Karine Cahier, David Goudenège, Martin G Lamarche, Gregory B Whitfield, Manon Lang, Jeffrey Valencia, Justine Groseille, Damien Piel, Yan-Jiun Lee, Peter Weigele, Yves V Brun, Eduardo P C Rocha, Frédérique Le Roux
{"title":"大基因组、广宿主范围弧菌噬菌体的适应性基因组可塑性","authors":"Charles Bernard, Yannick Labreuche, Carine Diarra, Pauline Daszkowski, Karine Cahier, David Goudenège, Martin G Lamarche, Gregory B Whitfield, Manon Lang, Jeffrey Valencia, Justine Groseille, Damien Piel, Yan-Jiun Lee, Peter Weigele, Yves V Brun, Eduardo P C Rocha, Frédérique Le Roux","doi":"10.1093/ismejo/wraf063","DOIUrl":null,"url":null,"abstract":"The host range of a bacteriophage—the diversity of hosts it can infect—is central to understanding phage ecology and applications. Whereas most well-characterized phages have narrow host ranges, broad-host-range phages represent an intriguing component of marine ecosystems. The genetic and evolutionary mechanisms driving their generalism remain poorly understood. In this study, we analyzed Schizotequatroviruses and their Vibrio crassostreae hosts, collected from an oyster farm. Schizotequatroviruses exhibit broad host ranges, large genomes (~252 kbp) encoding 26 tRNAs, and conserved genomic organization interspersed with recombination hotspots. These recombination events, particularly in regions encoding receptor-binding proteins and antidefense systems, highlight their adaptability to host resistance. Some lineages demonstrated the ability of receptor-switching between OmpK and LamB. Despite their broad host range, Schizotequatroviruses were rare in the environment. Their scarcity could not be attributed to burst size, which was comparable to other phages in vitro, but may result from ecological constraints or fitness trade-offs, such as their preference for targeting generalist vibrios in seawater rather than the patho-phylotypes selected in oyster farms. Our findings clarify the genetic and ecological variables shaping Schizotequatrovirus generalism and provide a foundation for future phage applications in aquaculture and beyond.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive genomic plasticity in large-genome, broad-host-range vibrio phages\",\"authors\":\"Charles Bernard, Yannick Labreuche, Carine Diarra, Pauline Daszkowski, Karine Cahier, David Goudenège, Martin G Lamarche, Gregory B Whitfield, Manon Lang, Jeffrey Valencia, Justine Groseille, Damien Piel, Yan-Jiun Lee, Peter Weigele, Yves V Brun, Eduardo P C Rocha, Frédérique Le Roux\",\"doi\":\"10.1093/ismejo/wraf063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The host range of a bacteriophage—the diversity of hosts it can infect—is central to understanding phage ecology and applications. Whereas most well-characterized phages have narrow host ranges, broad-host-range phages represent an intriguing component of marine ecosystems. The genetic and evolutionary mechanisms driving their generalism remain poorly understood. In this study, we analyzed Schizotequatroviruses and their Vibrio crassostreae hosts, collected from an oyster farm. Schizotequatroviruses exhibit broad host ranges, large genomes (~252 kbp) encoding 26 tRNAs, and conserved genomic organization interspersed with recombination hotspots. These recombination events, particularly in regions encoding receptor-binding proteins and antidefense systems, highlight their adaptability to host resistance. Some lineages demonstrated the ability of receptor-switching between OmpK and LamB. Despite their broad host range, Schizotequatroviruses were rare in the environment. Their scarcity could not be attributed to burst size, which was comparable to other phages in vitro, but may result from ecological constraints or fitness trade-offs, such as their preference for targeting generalist vibrios in seawater rather than the patho-phylotypes selected in oyster farms. Our findings clarify the genetic and ecological variables shaping Schizotequatrovirus generalism and provide a foundation for future phage applications in aquaculture and beyond.\",\"PeriodicalId\":516554,\"journal\":{\"name\":\"The ISME Journal\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The ISME Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ismejo/wraf063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wraf063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive genomic plasticity in large-genome, broad-host-range vibrio phages
The host range of a bacteriophage—the diversity of hosts it can infect—is central to understanding phage ecology and applications. Whereas most well-characterized phages have narrow host ranges, broad-host-range phages represent an intriguing component of marine ecosystems. The genetic and evolutionary mechanisms driving their generalism remain poorly understood. In this study, we analyzed Schizotequatroviruses and their Vibrio crassostreae hosts, collected from an oyster farm. Schizotequatroviruses exhibit broad host ranges, large genomes (~252 kbp) encoding 26 tRNAs, and conserved genomic organization interspersed with recombination hotspots. These recombination events, particularly in regions encoding receptor-binding proteins and antidefense systems, highlight their adaptability to host resistance. Some lineages demonstrated the ability of receptor-switching between OmpK and LamB. Despite their broad host range, Schizotequatroviruses were rare in the environment. Their scarcity could not be attributed to burst size, which was comparable to other phages in vitro, but may result from ecological constraints or fitness trade-offs, such as their preference for targeting generalist vibrios in seawater rather than the patho-phylotypes selected in oyster farms. Our findings clarify the genetic and ecological variables shaping Schizotequatrovirus generalism and provide a foundation for future phage applications in aquaculture and beyond.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信