利用电活性脂质体包覆金纳米颗粒进行氧化还原破坏用于癌症治疗

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ying-Chi Chen, Li-Chan Chang, Yan-Ling Liu, Ming-Che Chang, Yin-Fen Liu, Po-Ya Chang, Divinah Manoharan, Wen-Jyun Wang, Jia-Sin Chen, Hsueh-Chun Wang, Wen-Tai Chiu, Wei-Peng Li, Hwo-Shuenn Sheu, Wen-Pin Su, Chen-Sheng Yeh
{"title":"利用电活性脂质体包覆金纳米颗粒进行氧化还原破坏用于癌症治疗","authors":"Ying-Chi Chen, Li-Chan Chang, Yan-Ling Liu, Ming-Che Chang, Yin-Fen Liu, Po-Ya Chang, Divinah Manoharan, Wen-Jyun Wang, Jia-Sin Chen, Hsueh-Chun Wang, Wen-Tai Chiu, Wei-Peng Li, Hwo-Shuenn Sheu, Wen-Pin Su, Chen-Sheng Yeh","doi":"10.1038/s41467-025-58636-2","DOIUrl":null,"url":null,"abstract":"<p>Cancer remains a global health challenge necessitating innovative therapies. We introduce a strategy to disrupt cancer cell redox balance using gold nanoparticles (Au NPs) as electron sinks combined with electroactive membranes. Utilizing <i>Shewanella oneidensis</i> MR-1 membrane proteins, we develop liposomes enriched with <i>c</i>-type cytochromes. These, coupled with Au NPs, facilitate autonomous electron transfer from cancer cells, disrupting redox processes and inducing cell death. Effective across various cancer types, larger Au NPs show enhanced efficacy, especially under hypoxic conditions. Oxidative stress from Au@MIL (MIL: membrane-integrated liposome) treatments, including mitochondrial and endoplasmic reticulum lipid oxidation and mitochondrial membrane potential changes, triggers apoptosis, bypassing iron-mediated pathways. Surface plasmon band and X-ray absorption near-edge structure (XANES) analyses confirm electron transfer. A SiO<sub>2</sub> insulator coating on Au NPs blocks this transfer, suppressing cancer cell damage. This approach highlights the potential of modulated electron transfer pathways in targeted cancer therapy, offering refined and effective treatments.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"6 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Redox disruption using electroactive liposome coated gold nanoparticles for cancer therapy\",\"authors\":\"Ying-Chi Chen, Li-Chan Chang, Yan-Ling Liu, Ming-Che Chang, Yin-Fen Liu, Po-Ya Chang, Divinah Manoharan, Wen-Jyun Wang, Jia-Sin Chen, Hsueh-Chun Wang, Wen-Tai Chiu, Wei-Peng Li, Hwo-Shuenn Sheu, Wen-Pin Su, Chen-Sheng Yeh\",\"doi\":\"10.1038/s41467-025-58636-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cancer remains a global health challenge necessitating innovative therapies. We introduce a strategy to disrupt cancer cell redox balance using gold nanoparticles (Au NPs) as electron sinks combined with electroactive membranes. Utilizing <i>Shewanella oneidensis</i> MR-1 membrane proteins, we develop liposomes enriched with <i>c</i>-type cytochromes. These, coupled with Au NPs, facilitate autonomous electron transfer from cancer cells, disrupting redox processes and inducing cell death. Effective across various cancer types, larger Au NPs show enhanced efficacy, especially under hypoxic conditions. Oxidative stress from Au@MIL (MIL: membrane-integrated liposome) treatments, including mitochondrial and endoplasmic reticulum lipid oxidation and mitochondrial membrane potential changes, triggers apoptosis, bypassing iron-mediated pathways. Surface plasmon band and X-ray absorption near-edge structure (XANES) analyses confirm electron transfer. A SiO<sub>2</sub> insulator coating on Au NPs blocks this transfer, suppressing cancer cell damage. This approach highlights the potential of modulated electron transfer pathways in targeted cancer therapy, offering refined and effective treatments.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58636-2\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58636-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

癌症仍然是一项全球健康挑战,需要创新疗法。我们介绍了一种利用金纳米粒子(Au NPs)作为电子汇与电活性膜结合来破坏癌细胞氧化还原平衡的策略。利用希瓦氏菌MR-1膜蛋白,我们开发了富含c型细胞色素的脂质体。这些与Au NPs结合,促进癌细胞的自主电子转移,破坏氧化还原过程并诱导细胞死亡。对各种类型的癌症有效,较大的Au NPs显示出更高的疗效,特别是在缺氧条件下。Au@MIL (MIL:膜整合脂质体)处理引起的氧化应激,包括线粒体和内质网脂质氧化和线粒体膜电位变化,绕过铁介导的途径触发细胞凋亡。表面等离子体带和x射线吸收近边结构(XANES)分析证实了电子转移。金纳米粒子上的SiO2绝缘体涂层阻止了这种转移,抑制了癌细胞的损伤。这种方法强调了调制电子转移途径在靶向癌症治疗中的潜力,提供了精细和有效的治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Redox disruption using electroactive liposome coated gold nanoparticles for cancer therapy

Redox disruption using electroactive liposome coated gold nanoparticles for cancer therapy

Cancer remains a global health challenge necessitating innovative therapies. We introduce a strategy to disrupt cancer cell redox balance using gold nanoparticles (Au NPs) as electron sinks combined with electroactive membranes. Utilizing Shewanella oneidensis MR-1 membrane proteins, we develop liposomes enriched with c-type cytochromes. These, coupled with Au NPs, facilitate autonomous electron transfer from cancer cells, disrupting redox processes and inducing cell death. Effective across various cancer types, larger Au NPs show enhanced efficacy, especially under hypoxic conditions. Oxidative stress from Au@MIL (MIL: membrane-integrated liposome) treatments, including mitochondrial and endoplasmic reticulum lipid oxidation and mitochondrial membrane potential changes, triggers apoptosis, bypassing iron-mediated pathways. Surface plasmon band and X-ray absorption near-edge structure (XANES) analyses confirm electron transfer. A SiO2 insulator coating on Au NPs blocks this transfer, suppressing cancer cell damage. This approach highlights the potential of modulated electron transfer pathways in targeted cancer therapy, offering refined and effective treatments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信