Gerd A. Folberth, Chris D. Jones, Fiona M. O’Connor, Nicola Gedney, Paul T. Griffiths, Andy J. Wiltshire
{"title":"在积极的减缓行动下全球甲烷循环持续变化的驱动因素","authors":"Gerd A. Folberth, Chris D. Jones, Fiona M. O’Connor, Nicola Gedney, Paul T. Griffiths, Andy J. Wiltshire","doi":"10.1038/s41612-024-00867-z","DOIUrl":null,"url":null,"abstract":"<p>To achieve the Paris climate agreement goals, methane (CH<sub>4</sub>) emission mitigation plays a key role. Therefore, a better understanding of the global methane cycle is indispensable. Here we simulate the global methane cycle fully interactively from 1850 to 2100 with a strong mitigation action scenario (SSP1-2.6) post 2014. We show that the atmospheric methane burden largely recovers to early 20th-century levels, while wetland methane emissions follow a persistent upward trend from 166 Tg(CH<sub>4</sub>) yr<sup>–1</sup> at pre-industrial to 221 Tg(CH<sub>4</sub>) yr<sup>–1</sup> in 2100. The methane lifetime decreases from 9.3 to 7.3 years over the 1850–2100 period. We identify net primary productivity as the main driver behind the wetland methane trend with <i>R</i><sup>2</sup> = 0.7. This implies that important components of the methane cycle (wetland methane, methane lifetime) are subject to Earth system feedbacks, potentially impacting any prospective methane mitigation action. Therefore, methane mitigation strategies will need to consider feedbacks in the Earth system.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"59 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drivers of persistent changes in the global methane cycle under aggressive mitigation action\",\"authors\":\"Gerd A. Folberth, Chris D. Jones, Fiona M. O’Connor, Nicola Gedney, Paul T. Griffiths, Andy J. Wiltshire\",\"doi\":\"10.1038/s41612-024-00867-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To achieve the Paris climate agreement goals, methane (CH<sub>4</sub>) emission mitigation plays a key role. Therefore, a better understanding of the global methane cycle is indispensable. Here we simulate the global methane cycle fully interactively from 1850 to 2100 with a strong mitigation action scenario (SSP1-2.6) post 2014. We show that the atmospheric methane burden largely recovers to early 20th-century levels, while wetland methane emissions follow a persistent upward trend from 166 Tg(CH<sub>4</sub>) yr<sup>–1</sup> at pre-industrial to 221 Tg(CH<sub>4</sub>) yr<sup>–1</sup> in 2100. The methane lifetime decreases from 9.3 to 7.3 years over the 1850–2100 period. We identify net primary productivity as the main driver behind the wetland methane trend with <i>R</i><sup>2</sup> = 0.7. This implies that important components of the methane cycle (wetland methane, methane lifetime) are subject to Earth system feedbacks, potentially impacting any prospective methane mitigation action. Therefore, methane mitigation strategies will need to consider feedbacks in the Earth system.</p>\",\"PeriodicalId\":19438,\"journal\":{\"name\":\"npj Climate and Atmospheric Science\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Climate and Atmospheric Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1038/s41612-024-00867-z\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-024-00867-z","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Drivers of persistent changes in the global methane cycle under aggressive mitigation action
To achieve the Paris climate agreement goals, methane (CH4) emission mitigation plays a key role. Therefore, a better understanding of the global methane cycle is indispensable. Here we simulate the global methane cycle fully interactively from 1850 to 2100 with a strong mitigation action scenario (SSP1-2.6) post 2014. We show that the atmospheric methane burden largely recovers to early 20th-century levels, while wetland methane emissions follow a persistent upward trend from 166 Tg(CH4) yr–1 at pre-industrial to 221 Tg(CH4) yr–1 in 2100. The methane lifetime decreases from 9.3 to 7.3 years over the 1850–2100 period. We identify net primary productivity as the main driver behind the wetland methane trend with R2 = 0.7. This implies that important components of the methane cycle (wetland methane, methane lifetime) are subject to Earth system feedbacks, potentially impacting any prospective methane mitigation action. Therefore, methane mitigation strategies will need to consider feedbacks in the Earth system.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.