Giulia Baroncini, Francesco Campa, Priscilla Castellani Tarabini, Alberto Sala, Lorenzo Boldrini, Stefano Mazzoni, Antonio Paoli
{"title":"基于人体测量学的预测方程在追踪精英女足运动员一个赛季的脂肪量方面的准确性:一项验证研究。","authors":"Giulia Baroncini, Francesco Campa, Priscilla Castellani Tarabini, Alberto Sala, Lorenzo Boldrini, Stefano Mazzoni, Antonio Paoli","doi":"10.1186/s13102-025-01115-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Body fat is a key body composition parameter monitored in soccer. Identifying reliable alternatives to laboratory techniques for assessing body fat during the competitive period is essential. This study aimed to evaluate the cross-sectional and longitudinal validity of anthropometric prediction equations in elite female soccer players.</p><p><strong>Methods: </strong>Eighteen female soccer players (age: 26.6 [3.8] years; height: 168 [6.3] cm; body mass: 64.1 [7.4] kg; body mass index: 22.7 [1.9] kg/m²) from an Italian Serie A team were assessed at four time points during a competitive season. Fat mass was estimated using anthropometric equations by Evans and Warner and compared to dual-energy X-ray absorptiometry (DXA), which served as the reference method.</p><p><strong>Results: </strong>Cross-sectional agreement analysis revealed a bias of -4.5% with Warner's equation, while Evans's equation showed no bias compared to DXA, with coefficient of determination (R²) values of 0.69 and 0.70, respectively. Both methods showed a negative association (Evans: r = -0.53, Warner: r = -0.63) when the difference between the values and the mean with DXA were correlated. Longitudinal agreement analysis showed no significant differences in fat mass changes between the anthropometric equations and DXA, with R² values ranging from 0.68 to 0.83. The 95% limits of agreement between the methods for individual changes in fat mass ranged from - 3.3 to 3.2%. Furthermore, no significant changes (p > 0.05) in fat mass were observed over the season with any method.</p><p><strong>Conclusions: </strong>At the group level, Evans's equation provides valid estimates of fat mass, whereas it may overestimate values in players with low body fat and underestimate them in those with high fat mass. The Warner equation showed the same trend as Evans at the individual level, also resulting in poor accuracy at the group level. Despite this, both anthropometric equations are valid alternatives to DXA for monitoring fat mass changes during the season, with Evans's equation showing superior overall performance.</p>","PeriodicalId":48585,"journal":{"name":"BMC Sports Science Medicine and Rehabilitation","volume":"17 1","pages":"68"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11967043/pdf/","citationCount":"0","resultStr":"{\"title\":\"Accuracy of anthropometric-based predictive equations for tracking fat mass over a competitive season in elite female soccer players: a validation study.\",\"authors\":\"Giulia Baroncini, Francesco Campa, Priscilla Castellani Tarabini, Alberto Sala, Lorenzo Boldrini, Stefano Mazzoni, Antonio Paoli\",\"doi\":\"10.1186/s13102-025-01115-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and aims: </strong>Body fat is a key body composition parameter monitored in soccer. Identifying reliable alternatives to laboratory techniques for assessing body fat during the competitive period is essential. This study aimed to evaluate the cross-sectional and longitudinal validity of anthropometric prediction equations in elite female soccer players.</p><p><strong>Methods: </strong>Eighteen female soccer players (age: 26.6 [3.8] years; height: 168 [6.3] cm; body mass: 64.1 [7.4] kg; body mass index: 22.7 [1.9] kg/m²) from an Italian Serie A team were assessed at four time points during a competitive season. Fat mass was estimated using anthropometric equations by Evans and Warner and compared to dual-energy X-ray absorptiometry (DXA), which served as the reference method.</p><p><strong>Results: </strong>Cross-sectional agreement analysis revealed a bias of -4.5% with Warner's equation, while Evans's equation showed no bias compared to DXA, with coefficient of determination (R²) values of 0.69 and 0.70, respectively. Both methods showed a negative association (Evans: r = -0.53, Warner: r = -0.63) when the difference between the values and the mean with DXA were correlated. Longitudinal agreement analysis showed no significant differences in fat mass changes between the anthropometric equations and DXA, with R² values ranging from 0.68 to 0.83. The 95% limits of agreement between the methods for individual changes in fat mass ranged from - 3.3 to 3.2%. Furthermore, no significant changes (p > 0.05) in fat mass were observed over the season with any method.</p><p><strong>Conclusions: </strong>At the group level, Evans's equation provides valid estimates of fat mass, whereas it may overestimate values in players with low body fat and underestimate them in those with high fat mass. The Warner equation showed the same trend as Evans at the individual level, also resulting in poor accuracy at the group level. Despite this, both anthropometric equations are valid alternatives to DXA for monitoring fat mass changes during the season, with Evans's equation showing superior overall performance.</p>\",\"PeriodicalId\":48585,\"journal\":{\"name\":\"BMC Sports Science Medicine and Rehabilitation\",\"volume\":\"17 1\",\"pages\":\"68\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11967043/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Sports Science Medicine and Rehabilitation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13102-025-01115-4\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REHABILITATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Sports Science Medicine and Rehabilitation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13102-025-01115-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REHABILITATION","Score":null,"Total":0}
Accuracy of anthropometric-based predictive equations for tracking fat mass over a competitive season in elite female soccer players: a validation study.
Background and aims: Body fat is a key body composition parameter monitored in soccer. Identifying reliable alternatives to laboratory techniques for assessing body fat during the competitive period is essential. This study aimed to evaluate the cross-sectional and longitudinal validity of anthropometric prediction equations in elite female soccer players.
Methods: Eighteen female soccer players (age: 26.6 [3.8] years; height: 168 [6.3] cm; body mass: 64.1 [7.4] kg; body mass index: 22.7 [1.9] kg/m²) from an Italian Serie A team were assessed at four time points during a competitive season. Fat mass was estimated using anthropometric equations by Evans and Warner and compared to dual-energy X-ray absorptiometry (DXA), which served as the reference method.
Results: Cross-sectional agreement analysis revealed a bias of -4.5% with Warner's equation, while Evans's equation showed no bias compared to DXA, with coefficient of determination (R²) values of 0.69 and 0.70, respectively. Both methods showed a negative association (Evans: r = -0.53, Warner: r = -0.63) when the difference between the values and the mean with DXA were correlated. Longitudinal agreement analysis showed no significant differences in fat mass changes between the anthropometric equations and DXA, with R² values ranging from 0.68 to 0.83. The 95% limits of agreement between the methods for individual changes in fat mass ranged from - 3.3 to 3.2%. Furthermore, no significant changes (p > 0.05) in fat mass were observed over the season with any method.
Conclusions: At the group level, Evans's equation provides valid estimates of fat mass, whereas it may overestimate values in players with low body fat and underestimate them in those with high fat mass. The Warner equation showed the same trend as Evans at the individual level, also resulting in poor accuracy at the group level. Despite this, both anthropometric equations are valid alternatives to DXA for monitoring fat mass changes during the season, with Evans's equation showing superior overall performance.
期刊介绍:
BMC Sports Science, Medicine and Rehabilitation is an open access, peer reviewed journal that considers articles on all aspects of sports medicine and the exercise sciences, including rehabilitation, traumatology, cardiology, physiology, and nutrition.