{"title":"雄性在发育阶段之间的差异大于雌性,热带植物枫香对光的可塑性是阶段依赖的。","authors":"Jonathan D Moore, D Nicholas McLetchie","doi":"10.1093/aobpla/plaf010","DOIUrl":null,"url":null,"abstract":"<p><p>Plants have evolved strategies to maintain photosynthesis and mitigate tissue-damaging high light. In some dioecious seed plants, these strategies are sexually dimorphic and are linked to spatial segregation of the sexes (SSS) along light gradients. In vascular tissue-free plants (bryophytes) with separate sexes, SSS is common, but how light gradients, sexual dimorphisms, and SSS correlate is not well understood. To test if sexual dimorphisms in vegetative or sexual stages lead to light-associated SSS in bryophytes, we used <i>Marchantia inflexa</i> whose males occupy a wider range of light conditions, including higher light conditions, than females. We also tested if changes in development differed between sexes. We grew 25 males and 25 females in a glasshouse with clones in low and high light and assessed pigment and biomass allocation traits in vegetative and sexual thalli (analogous to leaves), representing non-sexual and sexually reproductive stages. We expected males to exhibit traits consistent with high light acclimation more than females and greater sex differences in sexual thalli due to specialization. Further, we reasoned that males would change more between stages than females. For sexual thalli, males had higher carotenoid/chlorophyll ratios (consistent with expectation), while females had higher chlorophyll <i>a/b</i> ratios and dry matter content (opposite from expectations). Vegetative thalli were not sexually dimorphic but were more plastic to light than sexual thalli. Overall, the stages differed more for males than females, but without regard for light. However, female stages differed more for dry matter content. Males generally need greater change in pigmentation and biomass allocation than females between stages, and we posit links for individual traits to sex function. Specialization in sexual thalli constrains their plasticity to light compared to vegetative thalli. Yet, neither sexual dimorphism in sexual thalli nor greater change between stages for males than females clearly leads to light-associated SSS.</p>","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"17 2","pages":"plaf010"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11966608/pdf/","citationCount":"0","resultStr":"{\"title\":\"Males differ more between developmental stages than females, and plasticity to light is stage-dependent in the tropical plant <i>Marchantia inflexa</i>.\",\"authors\":\"Jonathan D Moore, D Nicholas McLetchie\",\"doi\":\"10.1093/aobpla/plaf010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plants have evolved strategies to maintain photosynthesis and mitigate tissue-damaging high light. In some dioecious seed plants, these strategies are sexually dimorphic and are linked to spatial segregation of the sexes (SSS) along light gradients. In vascular tissue-free plants (bryophytes) with separate sexes, SSS is common, but how light gradients, sexual dimorphisms, and SSS correlate is not well understood. To test if sexual dimorphisms in vegetative or sexual stages lead to light-associated SSS in bryophytes, we used <i>Marchantia inflexa</i> whose males occupy a wider range of light conditions, including higher light conditions, than females. We also tested if changes in development differed between sexes. We grew 25 males and 25 females in a glasshouse with clones in low and high light and assessed pigment and biomass allocation traits in vegetative and sexual thalli (analogous to leaves), representing non-sexual and sexually reproductive stages. We expected males to exhibit traits consistent with high light acclimation more than females and greater sex differences in sexual thalli due to specialization. Further, we reasoned that males would change more between stages than females. For sexual thalli, males had higher carotenoid/chlorophyll ratios (consistent with expectation), while females had higher chlorophyll <i>a/b</i> ratios and dry matter content (opposite from expectations). Vegetative thalli were not sexually dimorphic but were more plastic to light than sexual thalli. Overall, the stages differed more for males than females, but without regard for light. However, female stages differed more for dry matter content. Males generally need greater change in pigmentation and biomass allocation than females between stages, and we posit links for individual traits to sex function. Specialization in sexual thalli constrains their plasticity to light compared to vegetative thalli. Yet, neither sexual dimorphism in sexual thalli nor greater change between stages for males than females clearly leads to light-associated SSS.</p>\",\"PeriodicalId\":48955,\"journal\":{\"name\":\"AoB Plants\",\"volume\":\"17 2\",\"pages\":\"plaf010\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11966608/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AoB Plants\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/aobpla/plaf010\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AoB Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/aobpla/plaf010","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Males differ more between developmental stages than females, and plasticity to light is stage-dependent in the tropical plant Marchantia inflexa.
Plants have evolved strategies to maintain photosynthesis and mitigate tissue-damaging high light. In some dioecious seed plants, these strategies are sexually dimorphic and are linked to spatial segregation of the sexes (SSS) along light gradients. In vascular tissue-free plants (bryophytes) with separate sexes, SSS is common, but how light gradients, sexual dimorphisms, and SSS correlate is not well understood. To test if sexual dimorphisms in vegetative or sexual stages lead to light-associated SSS in bryophytes, we used Marchantia inflexa whose males occupy a wider range of light conditions, including higher light conditions, than females. We also tested if changes in development differed between sexes. We grew 25 males and 25 females in a glasshouse with clones in low and high light and assessed pigment and biomass allocation traits in vegetative and sexual thalli (analogous to leaves), representing non-sexual and sexually reproductive stages. We expected males to exhibit traits consistent with high light acclimation more than females and greater sex differences in sexual thalli due to specialization. Further, we reasoned that males would change more between stages than females. For sexual thalli, males had higher carotenoid/chlorophyll ratios (consistent with expectation), while females had higher chlorophyll a/b ratios and dry matter content (opposite from expectations). Vegetative thalli were not sexually dimorphic but were more plastic to light than sexual thalli. Overall, the stages differed more for males than females, but without regard for light. However, female stages differed more for dry matter content. Males generally need greater change in pigmentation and biomass allocation than females between stages, and we posit links for individual traits to sex function. Specialization in sexual thalli constrains their plasticity to light compared to vegetative thalli. Yet, neither sexual dimorphism in sexual thalli nor greater change between stages for males than females clearly leads to light-associated SSS.
期刊介绍:
AoB PLANTS is an open-access, online journal that has been publishing peer-reviewed articles since 2010, with an emphasis on all aspects of environmental and evolutionary plant biology. Published by Oxford University Press, this journal is dedicated to rapid publication of research articles, reviews, commentaries and short communications. The taxonomic scope of the journal spans the full gamut of vascular and non-vascular plants, as well as other taxa that impact these organisms. AoB PLANTS provides a fast-track pathway for publishing high-quality research in an open-access environment, where papers are available online to anyone, anywhere free of charge.