GREEN:使用可学习小波和黎曼几何的轻量级架构,用于脑电图信号的生物标记物探测。

IF 6.7 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Patterns Pub Date : 2025-02-13 eCollection Date: 2025-03-14 DOI:10.1016/j.patter.2025.101182
Joseph Paillard, Jörg F Hipp, Denis A Engemann
{"title":"GREEN:使用可学习小波和黎曼几何的轻量级架构,用于脑电图信号的生物标记物探测。","authors":"Joseph Paillard, Jörg F Hipp, Denis A Engemann","doi":"10.1016/j.patter.2025.101182","DOIUrl":null,"url":null,"abstract":"<p><p>Spectral analysis using wavelets is widely used for identifying biomarkers in EEG signals. Recently, Riemannian geometry has provided an effective mathematical framework for predicting biomedical outcomes from multichannel electroencephalography (EEG) recordings while showing concord with neuroscientific domain knowledge. However, these methods rely on handcrafted rules and sequential optimization. In contrast, deep learning (DL) offers end-to-end trainable models achieving state-of-the-art performance on various prediction tasks but lacks interpretability and interoperability with established neuroscience concepts. We introduce Gabor Riemann EEGNet (GREEN), a lightweight neural network that integrates wavelet transforms and Riemannian geometry for processing raw EEG data. Benchmarking on six prediction tasks across four datasets with over 5,000 participants, GREEN outperformed non-deep state-of-the-art models and performed favorably against large DL models while using orders-of-magnitude fewer parameters. Computational experiments showed that GREEN facilitates learning sparse representations without compromising performance. By integrating domain knowledge, GREEN combines a desirable complexity-performance trade-off with interpretable representations.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"6 3","pages":"101182"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11963017/pdf/","citationCount":"0","resultStr":"{\"title\":\"GREEN: A lightweight architecture using learnable wavelets and Riemannian geometry for biomarker exploration with EEG signals.\",\"authors\":\"Joseph Paillard, Jörg F Hipp, Denis A Engemann\",\"doi\":\"10.1016/j.patter.2025.101182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spectral analysis using wavelets is widely used for identifying biomarkers in EEG signals. Recently, Riemannian geometry has provided an effective mathematical framework for predicting biomedical outcomes from multichannel electroencephalography (EEG) recordings while showing concord with neuroscientific domain knowledge. However, these methods rely on handcrafted rules and sequential optimization. In contrast, deep learning (DL) offers end-to-end trainable models achieving state-of-the-art performance on various prediction tasks but lacks interpretability and interoperability with established neuroscience concepts. We introduce Gabor Riemann EEGNet (GREEN), a lightweight neural network that integrates wavelet transforms and Riemannian geometry for processing raw EEG data. Benchmarking on six prediction tasks across four datasets with over 5,000 participants, GREEN outperformed non-deep state-of-the-art models and performed favorably against large DL models while using orders-of-magnitude fewer parameters. Computational experiments showed that GREEN facilitates learning sparse representations without compromising performance. By integrating domain knowledge, GREEN combines a desirable complexity-performance trade-off with interpretable representations.</p>\",\"PeriodicalId\":36242,\"journal\":{\"name\":\"Patterns\",\"volume\":\"6 3\",\"pages\":\"101182\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11963017/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Patterns\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.patter.2025.101182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/14 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2025.101182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/14 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

小波谱分析被广泛应用于脑电图信号的生物标记物识别。最近,黎曼几何为预测多通道脑电图(EEG)记录的生物医学结果提供了一个有效的数学框架,同时显示了与神经科学领域知识的一致性。然而,这些方法依赖于手工制定的规则和顺序优化。相比之下,深度学习(DL)提供端到端的可训练模型,在各种预测任务中实现最先进的性能,但缺乏可解释性和与已建立的神经科学概念的互操作性。我们介绍了Gabor Riemann EEGNet (GREEN),这是一种将小波变换和黎曼几何相结合的轻量级神经网络,用于处理原始EEG数据。在超过5000名参与者的4个数据集上对6个预测任务进行基准测试,GREEN优于非深度最先进的模型,并且在使用数量级更少的参数时优于大型深度学习模型。计算实验表明,GREEN有助于在不影响性能的情况下学习稀疏表示。通过集成领域知识,GREEN将理想的复杂性-性能权衡与可解释的表示相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GREEN: A lightweight architecture using learnable wavelets and Riemannian geometry for biomarker exploration with EEG signals.

Spectral analysis using wavelets is widely used for identifying biomarkers in EEG signals. Recently, Riemannian geometry has provided an effective mathematical framework for predicting biomedical outcomes from multichannel electroencephalography (EEG) recordings while showing concord with neuroscientific domain knowledge. However, these methods rely on handcrafted rules and sequential optimization. In contrast, deep learning (DL) offers end-to-end trainable models achieving state-of-the-art performance on various prediction tasks but lacks interpretability and interoperability with established neuroscience concepts. We introduce Gabor Riemann EEGNet (GREEN), a lightweight neural network that integrates wavelet transforms and Riemannian geometry for processing raw EEG data. Benchmarking on six prediction tasks across four datasets with over 5,000 participants, GREEN outperformed non-deep state-of-the-art models and performed favorably against large DL models while using orders-of-magnitude fewer parameters. Computational experiments showed that GREEN facilitates learning sparse representations without compromising performance. By integrating domain knowledge, GREEN combines a desirable complexity-performance trade-off with interpretable representations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信