基于slf -seq技术的辣椒果实颜色候选基因挖掘及SNP标记开发研究。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yaning Meng, Xinxin Li, Hongxiao Zhang, Zhanghong Yu, Zhe Zhang, Yanqin Fan, Libin Yan
{"title":"基于slf -seq技术的辣椒果实颜色候选基因挖掘及SNP标记开发研究。","authors":"Yaning Meng, Xinxin Li, Hongxiao Zhang, Zhanghong Yu, Zhe Zhang, Yanqin Fan, Libin Yan","doi":"10.1038/s41598-025-95552-3","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to enhance the coloration of pepper fruit by identifying valuable genetic resources through the analysis of single nucleotide polymorphism (SNP). markers and candidate genes associated with fruit pigmentation. Utilizing 197 natural populations of both hot and sweet peppers, we employed specific-locus amplified fragment sequencing (SLAF-seq) to examine 1496 high-quality SNP markers, thereby identifying significant loci contributing to fruit color variation. Our genome-wide association study pinpointed 30 significant SNP sites located on chromosome 6. Further analysis using kompetitive allele-specific PCR(KASP) and phenotypic correlation with fruit color led to the identification of the CA.PGAv.1.6.scaffold919.44 gene, which is implicated in anthocyanin synthesisregulation via the NAC domain, thereby influencing pepper fruit coloration. These findings offer a valuable reference for the advancement of molecular-assisted breeding strategies aimed at improving the fruit color of both sweet and hot peppers.To improve the fruit color of sweet peppers, this study aimed to identify single nucleotide polymorphism (SNP) loci and candidate genes significantly associated with fruit color. A natural population of 197 sweet pepper accessions was used as the material. SLAF-seq was conducted with 1496 high-quality SNP markers to mine excellent variant loci and predict candidate genes. Through Manhattan plot analysis and association analysis with the best linear unbiased prediction (BLUP) values of fruit color, 30 significant loci were detected on chromosome 6. Combining KASP genotyping technology with field phenotypes, the gene CAPGAv.1.6.scaffold919.44 was identified as a candidate gene regulating mature fruit color. It is related to the NAC domain and is hypothesized to alter fruit color by regulating anthocyanin biosynthesis. This study lays the foundation for molecular-assisted breeding of sweet peppers related to fruit color.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"11392"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968913/pdf/","citationCount":"0","resultStr":"{\"title\":\"Research on the mining of candidate genes for pepper fruit color and development of SNP markers based on SLAF-seq technology.\",\"authors\":\"Yaning Meng, Xinxin Li, Hongxiao Zhang, Zhanghong Yu, Zhe Zhang, Yanqin Fan, Libin Yan\",\"doi\":\"10.1038/s41598-025-95552-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aims to enhance the coloration of pepper fruit by identifying valuable genetic resources through the analysis of single nucleotide polymorphism (SNP). markers and candidate genes associated with fruit pigmentation. Utilizing 197 natural populations of both hot and sweet peppers, we employed specific-locus amplified fragment sequencing (SLAF-seq) to examine 1496 high-quality SNP markers, thereby identifying significant loci contributing to fruit color variation. Our genome-wide association study pinpointed 30 significant SNP sites located on chromosome 6. Further analysis using kompetitive allele-specific PCR(KASP) and phenotypic correlation with fruit color led to the identification of the CA.PGAv.1.6.scaffold919.44 gene, which is implicated in anthocyanin synthesisregulation via the NAC domain, thereby influencing pepper fruit coloration. These findings offer a valuable reference for the advancement of molecular-assisted breeding strategies aimed at improving the fruit color of both sweet and hot peppers.To improve the fruit color of sweet peppers, this study aimed to identify single nucleotide polymorphism (SNP) loci and candidate genes significantly associated with fruit color. A natural population of 197 sweet pepper accessions was used as the material. SLAF-seq was conducted with 1496 high-quality SNP markers to mine excellent variant loci and predict candidate genes. Through Manhattan plot analysis and association analysis with the best linear unbiased prediction (BLUP) values of fruit color, 30 significant loci were detected on chromosome 6. Combining KASP genotyping technology with field phenotypes, the gene CAPGAv.1.6.scaffold919.44 was identified as a candidate gene regulating mature fruit color. It is related to the NAC domain and is hypothesized to alter fruit color by regulating anthocyanin biosynthesis. This study lays the foundation for molecular-assisted breeding of sweet peppers related to fruit color.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"11392\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968913/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-95552-3\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-95552-3","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在通过对辣椒果实的单核苷酸多态性(SNP)分析,发现有价值的遗传资源,从而提高辣椒果实的颜色。与果实色素沉着相关的标记和候选基因。利用197个天然辣椒和甜椒群体,我们采用特定位点扩增片段测序(SLAF-seq)技术检测了1496个高质量SNP标记,从而确定了影响果实颜色变化的重要位点。我们的全基因组关联研究确定了位于6号染色体上的30个重要SNP位点。进一步利用竞争等位基因特异性PCR(KASP)和果实颜色表型相关性分析,鉴定出ca . pgv .1.6.scaffold919.44基因,该基因通过NAC结构域参与花青素合成调控,从而影响辣椒果实颜色。这些研究结果为提高甜椒和辣椒果实颜色的分子辅助育种策略提供了有价值的参考。为了改善甜椒果实颜色,本研究旨在鉴定与果实颜色显著相关的单核苷酸多态性位点和候选基因。以197份甜椒自然群体为材料。利用1496个高质量SNP标记进行SLAF-seq,挖掘优秀变异位点,预测候选基因。通过曼哈顿图分析和果实颜色最佳线性无偏预测值(BLUP)关联分析,在6号染色体上检测到30个显著位点。将KASP基因分型技术与田间表型相结合,鉴定出CAPGAv.1.6.scaffold919.44基因为调控成熟果实颜色的候选基因。它与NAC结构域有关,并被假设通过调节花青素的生物合成来改变水果的颜色。本研究为甜椒果色相关分子辅助育种奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on the mining of candidate genes for pepper fruit color and development of SNP markers based on SLAF-seq technology.

This study aims to enhance the coloration of pepper fruit by identifying valuable genetic resources through the analysis of single nucleotide polymorphism (SNP). markers and candidate genes associated with fruit pigmentation. Utilizing 197 natural populations of both hot and sweet peppers, we employed specific-locus amplified fragment sequencing (SLAF-seq) to examine 1496 high-quality SNP markers, thereby identifying significant loci contributing to fruit color variation. Our genome-wide association study pinpointed 30 significant SNP sites located on chromosome 6. Further analysis using kompetitive allele-specific PCR(KASP) and phenotypic correlation with fruit color led to the identification of the CA.PGAv.1.6.scaffold919.44 gene, which is implicated in anthocyanin synthesisregulation via the NAC domain, thereby influencing pepper fruit coloration. These findings offer a valuable reference for the advancement of molecular-assisted breeding strategies aimed at improving the fruit color of both sweet and hot peppers.To improve the fruit color of sweet peppers, this study aimed to identify single nucleotide polymorphism (SNP) loci and candidate genes significantly associated with fruit color. A natural population of 197 sweet pepper accessions was used as the material. SLAF-seq was conducted with 1496 high-quality SNP markers to mine excellent variant loci and predict candidate genes. Through Manhattan plot analysis and association analysis with the best linear unbiased prediction (BLUP) values of fruit color, 30 significant loci were detected on chromosome 6. Combining KASP genotyping technology with field phenotypes, the gene CAPGAv.1.6.scaffold919.44 was identified as a candidate gene regulating mature fruit color. It is related to the NAC domain and is hypothesized to alter fruit color by regulating anthocyanin biosynthesis. This study lays the foundation for molecular-assisted breeding of sweet peppers related to fruit color.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信