Roberta Marques, Daniel Jiménez-García, Luis E Escobar, Tiago Kütter Krolow, Rodrigo Ferreira Krüger
{"title":"锥虫媒介Tabanus(双翅目:Tabanidae)的空间流行病学研究。","authors":"Roberta Marques, Daniel Jiménez-García, Luis E Escobar, Tiago Kütter Krolow, Rodrigo Ferreira Krüger","doi":"10.1186/s13071-025-06708-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Trypanosoma are protozoa parasites that infect animals and can cause economic losses in cattle production. Trypanosoma live in the blood and are transmitted by hematophagous insects, such as flies in the genus Tabanus. Using ecological niche models, we explored the current geography of six common Tabanus species in Brazil, which are considered vectors of Trypanosoma vivax and Tr. evansi in the Neotropics.</p><p><strong>Methods: </strong>We used georeferenced data and biotic and abiotic variables integrated using a fundamental ecological niche modeling approach. Modeling results from six Tabanus species were used to identify risk areas of Trypanosoma transmission in Latin America accounting for area predicted, landscape conditions, and density of livestock. We performed Jaccard, Schoener, and Hellinger metrics to indicate the ecological niche similarities of pairs of Tabanus species to identify known and likely vectors overlapping in distribution across geographies.</p><p><strong>Results: </strong>Our results revealed significant ecological niche similarities for two Tabanus species (T. pungens and T. sorbillans), whereas T. triangulum and T. importunus have low ecological similarity. Ecological niche models predicted risk of Trypanosoma transmission across Neotropical countries, with the highest risk in southern South America, Venezuela, and central Mexico.</p><p><strong>Conclusions: </strong>More than 1.6 billion cattle and 38 million horses are under a threat category for infection risk. Furthermore, we identified specific areas and livestock populations at high risk of trypanosomiasis in Latin America. This study reveals the areas, landscapes, and populations at risk of Trypanosoma infections in livestock in the Americas.</p>","PeriodicalId":19793,"journal":{"name":"Parasites & Vectors","volume":"18 1","pages":"128"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11969902/pdf/","citationCount":"0","resultStr":"{\"title\":\"Spatial epidemiology of Tabanus (Diptera: Tabanidae) vectors of Trypanosoma.\",\"authors\":\"Roberta Marques, Daniel Jiménez-García, Luis E Escobar, Tiago Kütter Krolow, Rodrigo Ferreira Krüger\",\"doi\":\"10.1186/s13071-025-06708-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Trypanosoma are protozoa parasites that infect animals and can cause economic losses in cattle production. Trypanosoma live in the blood and are transmitted by hematophagous insects, such as flies in the genus Tabanus. Using ecological niche models, we explored the current geography of six common Tabanus species in Brazil, which are considered vectors of Trypanosoma vivax and Tr. evansi in the Neotropics.</p><p><strong>Methods: </strong>We used georeferenced data and biotic and abiotic variables integrated using a fundamental ecological niche modeling approach. Modeling results from six Tabanus species were used to identify risk areas of Trypanosoma transmission in Latin America accounting for area predicted, landscape conditions, and density of livestock. We performed Jaccard, Schoener, and Hellinger metrics to indicate the ecological niche similarities of pairs of Tabanus species to identify known and likely vectors overlapping in distribution across geographies.</p><p><strong>Results: </strong>Our results revealed significant ecological niche similarities for two Tabanus species (T. pungens and T. sorbillans), whereas T. triangulum and T. importunus have low ecological similarity. Ecological niche models predicted risk of Trypanosoma transmission across Neotropical countries, with the highest risk in southern South America, Venezuela, and central Mexico.</p><p><strong>Conclusions: </strong>More than 1.6 billion cattle and 38 million horses are under a threat category for infection risk. Furthermore, we identified specific areas and livestock populations at high risk of trypanosomiasis in Latin America. This study reveals the areas, landscapes, and populations at risk of Trypanosoma infections in livestock in the Americas.</p>\",\"PeriodicalId\":19793,\"journal\":{\"name\":\"Parasites & Vectors\",\"volume\":\"18 1\",\"pages\":\"128\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11969902/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parasites & Vectors\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13071-025-06708-z\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasites & Vectors","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13071-025-06708-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
Spatial epidemiology of Tabanus (Diptera: Tabanidae) vectors of Trypanosoma.
Background: Trypanosoma are protozoa parasites that infect animals and can cause economic losses in cattle production. Trypanosoma live in the blood and are transmitted by hematophagous insects, such as flies in the genus Tabanus. Using ecological niche models, we explored the current geography of six common Tabanus species in Brazil, which are considered vectors of Trypanosoma vivax and Tr. evansi in the Neotropics.
Methods: We used georeferenced data and biotic and abiotic variables integrated using a fundamental ecological niche modeling approach. Modeling results from six Tabanus species were used to identify risk areas of Trypanosoma transmission in Latin America accounting for area predicted, landscape conditions, and density of livestock. We performed Jaccard, Schoener, and Hellinger metrics to indicate the ecological niche similarities of pairs of Tabanus species to identify known and likely vectors overlapping in distribution across geographies.
Results: Our results revealed significant ecological niche similarities for two Tabanus species (T. pungens and T. sorbillans), whereas T. triangulum and T. importunus have low ecological similarity. Ecological niche models predicted risk of Trypanosoma transmission across Neotropical countries, with the highest risk in southern South America, Venezuela, and central Mexico.
Conclusions: More than 1.6 billion cattle and 38 million horses are under a threat category for infection risk. Furthermore, we identified specific areas and livestock populations at high risk of trypanosomiasis in Latin America. This study reveals the areas, landscapes, and populations at risk of Trypanosoma infections in livestock in the Americas.
期刊介绍:
Parasites & Vectors is an open access, peer-reviewed online journal dealing with the biology of parasites, parasitic diseases, intermediate hosts, vectors and vector-borne pathogens. Manuscripts published in this journal will be available to all worldwide, with no barriers to access, immediately following acceptance. However, authors retain the copyright of their material and may use it, or distribute it, as they wish.
Manuscripts on all aspects of the basic and applied biology of parasites, intermediate hosts, vectors and vector-borne pathogens will be considered. In addition to the traditional and well-established areas of science in these fields, we also aim to provide a vehicle for publication of the rapidly developing resources and technology in parasite, intermediate host and vector genomics and their impacts on biological research. We are able to publish large datasets and extensive results, frequently associated with genomic and post-genomic technologies, which are not readily accommodated in traditional journals. Manuscripts addressing broader issues, for example economics, social sciences and global climate change in relation to parasites, vectors and disease control, are also welcomed.