IF 4.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Sara Neves Silva, Tomas Woodgate, Sarah McElroy, Michela Cleri, Kamilah St Clair, Jordina Aviles Verdera, Kelly Payette, Alena Uus, Lisa Story, David Lloyd, Mary A Rutherford, Joseph V Hajnal, Kuberan Pushparajah, Jana Hutter
{"title":"AutOmatic floW planning for fetaL MRI (OWL).","authors":"Sara Neves Silva, Tomas Woodgate, Sarah McElroy, Michela Cleri, Kamilah St Clair, Jordina Aviles Verdera, Kelly Payette, Alena Uus, Lisa Story, David Lloyd, Mary A Rutherford, Joseph V Hajnal, Kuberan Pushparajah, Jana Hutter","doi":"10.1016/j.jocmr.2025.101888","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Widening access to fetal flow imaging by automating real-time planning of 2D phase-contrast flow imaging (OWL).</p><p><strong>Methods: </strong>Two subsequent deep learning networks for fetal body localization and cardiac landmark detection on a coronal whole-uterus scan were trained on 167 and 71 fetal datasets, respectively, and implemented for real-time automatic planning of phase-contrast sequences. OWL was evaluated retrospectively in 10 datasets and prospectively in 7 fetal subjects (36+3-39+3 gestational weeks), with qualitative and quantitative comparisons to manual planning.</p><p><strong>Results: </strong>OWL was successfully implemented in 6/7 prospective cases. Fetal body localization achieved a Dice score of 0.94  ±  0.05, and cardiac landmark detection accuracies were 5.77  ±  2.91 mm (descending aorta), 4.32  ±  2.44 mm (spine), and 4.94  ±  3.82 mm (umbilical vein). Planning quality was 2.73/4 (automatic) and 3.0/4 (manual). Indexed flow measurements differed by  - 1.8% (range  - 14.2% to 14.9%) between OWL and manual planning.</p><p><strong>Conclusions: </strong>OWL achieved real-time automated planning of 2D phase-contrast MRI for 2 major vessels, demonstrating feasibility at 0.55T with potential generalisation across field strengths, extending access to this modality beyond specialised centres.</p>","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":" ","pages":"101888"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Magnetic Resonance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jocmr.2025.101888","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的:通过自动实时规划二维相位对比血流成像(OWL),拓宽胎儿血流成像的获取途径:分别在 167 个和 71 个胎儿数据集上训练了用于胎儿体定位和全子宫冠状位扫描心脏标志物检测的两个后续深度学习网络,并将其用于相位对比序列的实时自动规划。OWL在10个数据集中进行了回顾性评估,在7个胎儿受试者(36+3-39+3孕周)中进行了前瞻性评估,并与人工规划进行了定性和定量比较:结果:OWL 在 6/7 个前瞻性病例中成功实施。胎体定位的 Dice 评分为 0.94 ± 0.05,心脏标志检测准确率为 5.77 ± 2.91 mm(降主动脉)、4.32 ± 2.44 mm(脊柱)和 4.94 ± 3.82 mm(脐静脉)。规划质量为 2.73/4(自动)和 3.0/4(手动)。OWL和手动规划的索引血流测量值相差-1.8%(范围-14.2%至14.9%):OWL实现了2D相位对比MRI对2条主要血管的实时自动规划,证明了在0.55T下的可行性,并有可能在不同场强下推广,从而将这种模式的使用范围扩大到专科中心以外。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AutOmatic floW planning for fetaL MRI (OWL).

Purpose: Widening access to fetal flow imaging by automating real-time planning of 2D phase-contrast flow imaging (OWL).

Methods: Two subsequent deep learning networks for fetal body localization and cardiac landmark detection on a coronal whole-uterus scan were trained on 167 and 71 fetal datasets, respectively, and implemented for real-time automatic planning of phase-contrast sequences. OWL was evaluated retrospectively in 10 datasets and prospectively in 7 fetal subjects (36+3-39+3 gestational weeks), with qualitative and quantitative comparisons to manual planning.

Results: OWL was successfully implemented in 6/7 prospective cases. Fetal body localization achieved a Dice score of 0.94  ±  0.05, and cardiac landmark detection accuracies were 5.77  ±  2.91 mm (descending aorta), 4.32  ±  2.44 mm (spine), and 4.94  ±  3.82 mm (umbilical vein). Planning quality was 2.73/4 (automatic) and 3.0/4 (manual). Indexed flow measurements differed by  - 1.8% (range  - 14.2% to 14.9%) between OWL and manual planning.

Conclusions: OWL achieved real-time automated planning of 2D phase-contrast MRI for 2 major vessels, demonstrating feasibility at 0.55T with potential generalisation across field strengths, extending access to this modality beyond specialised centres.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.90
自引率
12.50%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Journal of Cardiovascular Magnetic Resonance (JCMR) publishes high-quality articles on all aspects of basic, translational and clinical research on the design, development, manufacture, and evaluation of cardiovascular magnetic resonance (CMR) methods applied to the cardiovascular system. Topical areas include, but are not limited to: New applications of magnetic resonance to improve the diagnostic strategies, risk stratification, characterization and management of diseases affecting the cardiovascular system. New methods to enhance or accelerate image acquisition and data analysis. Results of multicenter, or larger single-center studies that provide insight into the utility of CMR. Basic biological perceptions derived by CMR methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信