Luo-Yang Cai, Ying Yuan, Hai Huang, Jin Zhang, Xin-Yi Zou, Xiao-Ming Zhang
{"title":"LCN2在脑缺血再灌注损伤中的作用机制。","authors":"Luo-Yang Cai, Ying Yuan, Hai Huang, Jin Zhang, Xin-Yi Zou, Xiao-Ming Zhang","doi":"10.3389/fnins.2025.1536055","DOIUrl":null,"url":null,"abstract":"<p><p>Cerebral ischemia-reperfusion injury (CIRI) is a complex pathophysiological process faced by brain tissues after ischemic stroke treatment, which involves mechanisms of inflammatory response, oxidative stress and apoptosis, and severely affects treatment outcome. Lipocalin-2 (LCN2), an acute-phase protein, is significantly up-regulated after CIRI and promotes neural repair by enhancing astrocyte phagocytosis, but its over-activation may also trigger secondary inflammation and demyelination injury. LCN2 also plays a key role in neuroinflammation regulation by regulating the polarization state of astrocytes and the release of inflammatory factors, and may affect the integrity of the blood-brain barrier and a variety of pathologic injury processes. In view of the important role of LCN2 in CIRI, this article reviews the mechanism of LCN2, aiming to provide new ideas and methods for the treatment of ischemic stroke.</p>","PeriodicalId":12639,"journal":{"name":"Frontiers in Neuroscience","volume":"19 ","pages":"1536055"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11965685/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mechanism of LCN2 in cerebral ischemia-reperfusion injury.\",\"authors\":\"Luo-Yang Cai, Ying Yuan, Hai Huang, Jin Zhang, Xin-Yi Zou, Xiao-Ming Zhang\",\"doi\":\"10.3389/fnins.2025.1536055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cerebral ischemia-reperfusion injury (CIRI) is a complex pathophysiological process faced by brain tissues after ischemic stroke treatment, which involves mechanisms of inflammatory response, oxidative stress and apoptosis, and severely affects treatment outcome. Lipocalin-2 (LCN2), an acute-phase protein, is significantly up-regulated after CIRI and promotes neural repair by enhancing astrocyte phagocytosis, but its over-activation may also trigger secondary inflammation and demyelination injury. LCN2 also plays a key role in neuroinflammation regulation by regulating the polarization state of astrocytes and the release of inflammatory factors, and may affect the integrity of the blood-brain barrier and a variety of pathologic injury processes. In view of the important role of LCN2 in CIRI, this article reviews the mechanism of LCN2, aiming to provide new ideas and methods for the treatment of ischemic stroke.</p>\",\"PeriodicalId\":12639,\"journal\":{\"name\":\"Frontiers in Neuroscience\",\"volume\":\"19 \",\"pages\":\"1536055\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11965685/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fnins.2025.1536055\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnins.2025.1536055","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Mechanism of LCN2 in cerebral ischemia-reperfusion injury.
Cerebral ischemia-reperfusion injury (CIRI) is a complex pathophysiological process faced by brain tissues after ischemic stroke treatment, which involves mechanisms of inflammatory response, oxidative stress and apoptosis, and severely affects treatment outcome. Lipocalin-2 (LCN2), an acute-phase protein, is significantly up-regulated after CIRI and promotes neural repair by enhancing astrocyte phagocytosis, but its over-activation may also trigger secondary inflammation and demyelination injury. LCN2 also plays a key role in neuroinflammation regulation by regulating the polarization state of astrocytes and the release of inflammatory factors, and may affect the integrity of the blood-brain barrier and a variety of pathologic injury processes. In view of the important role of LCN2 in CIRI, this article reviews the mechanism of LCN2, aiming to provide new ideas and methods for the treatment of ischemic stroke.
期刊介绍:
Neural Technology is devoted to the convergence between neurobiology and quantum-, nano- and micro-sciences. In our vision, this interdisciplinary approach should go beyond the technological development of sophisticated methods and should contribute in generating a genuine change in our discipline.