{"title":"Effects of low-intensity blood flow restriction training on myocardial injury indices, antioxidant and anti-apoptotic capacity in rats.","authors":"Yuwen ShangGuan, Kunyi Huang, Zining Zhu, Yuan Yuan, Yawei Song, Hao Wang, Liang Chen, Shiqi Yu, Guangzhi Zheng, Qi Liang","doi":"10.3389/fphys.2025.1508305","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aims to investigate the effects of low-intensity blood flow restriction training on myocardial tissue in rats. By measuring the levels of myocardial injury biomarkers in serum and the expression of anti-apoptotic and antioxidant proteins in myocardial tissue, the study preliminarily explores the underlying mechanisms.</p><p><strong>Methods: </strong>Male 3-month-old Sprague-Dawley rats were randomly divided into the following groups: control group (CON), low-intensity training group (LIRT), high-intensity training group (HIRT), and low-intensity blood flow restriction training group (LIBFR), with 6 rats in each group. Body weight, maximum voluntary carrying capacity, myocardial morphology, myocardial injury biomarkers, and the expression levels of Bcl-2, Bax, Nrf2, and Keap1 proteins in myocardial tissue were evaluated.</p><p><strong>Results: </strong>(1)cTn1 Detection: The HIRT group showed a significant increase in cTn1 levels (P < 0.01), while the LIBFR group had a lower cTn1 level compared to the HIRT group (P < 0.05). (2)Nrf2 and Keap1 Results: Compared to the CON group, the LIBFR group showed an increase in Nrf2 (P < 0.05), and a significant increase in Keap1 (P < 0.01). (3)Bcl-2 and Bax Results: Compared to the CON group, Bcl-2 levels were significantly elevated in the HIRT group (P < 0.01) and increased in the LIBFR group (P < 0.05), while Bax expression was significantly reduced in the LIBFR group (P < 0.05). Regarding the Bcl-2/Bax ratio, the LIRT, HIRT, and LIBFR groups exhibited significantly higher values compared to the CON group (P < 0.01). Furthermore, the HIRT and LIBFR groups showed significantly higher Bcl-2/Bax ratios than the LIRT group (P < 0.01).</p><p><strong>Conclusion: </strong>Low-intensity blood flow restriction training can effectively reduce cTn1 in rat serum, decrease cardiomyocyte apoptosis, and improve antioxidant capacity, which has a certain protective effect on the myocardium.</p>","PeriodicalId":12477,"journal":{"name":"Frontiers in Physiology","volume":"16 ","pages":"1508305"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11966203/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fphys.2025.1508305","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Effects of low-intensity blood flow restriction training on myocardial injury indices, antioxidant and anti-apoptotic capacity in rats.
Objective: This study aims to investigate the effects of low-intensity blood flow restriction training on myocardial tissue in rats. By measuring the levels of myocardial injury biomarkers in serum and the expression of anti-apoptotic and antioxidant proteins in myocardial tissue, the study preliminarily explores the underlying mechanisms.
Methods: Male 3-month-old Sprague-Dawley rats were randomly divided into the following groups: control group (CON), low-intensity training group (LIRT), high-intensity training group (HIRT), and low-intensity blood flow restriction training group (LIBFR), with 6 rats in each group. Body weight, maximum voluntary carrying capacity, myocardial morphology, myocardial injury biomarkers, and the expression levels of Bcl-2, Bax, Nrf2, and Keap1 proteins in myocardial tissue were evaluated.
Results: (1)cTn1 Detection: The HIRT group showed a significant increase in cTn1 levels (P < 0.01), while the LIBFR group had a lower cTn1 level compared to the HIRT group (P < 0.05). (2)Nrf2 and Keap1 Results: Compared to the CON group, the LIBFR group showed an increase in Nrf2 (P < 0.05), and a significant increase in Keap1 (P < 0.01). (3)Bcl-2 and Bax Results: Compared to the CON group, Bcl-2 levels were significantly elevated in the HIRT group (P < 0.01) and increased in the LIBFR group (P < 0.05), while Bax expression was significantly reduced in the LIBFR group (P < 0.05). Regarding the Bcl-2/Bax ratio, the LIRT, HIRT, and LIBFR groups exhibited significantly higher values compared to the CON group (P < 0.01). Furthermore, the HIRT and LIBFR groups showed significantly higher Bcl-2/Bax ratios than the LIRT group (P < 0.01).
Conclusion: Low-intensity blood flow restriction training can effectively reduce cTn1 in rat serum, decrease cardiomyocyte apoptosis, and improve antioxidant capacity, which has a certain protective effect on the myocardium.
期刊介绍:
Frontiers in Physiology is a leading journal in its field, publishing rigorously peer-reviewed research on the physiology of living systems, from the subcellular and molecular domains to the intact organism, and its interaction with the environment. Field Chief Editor George E. Billman at the Ohio State University Columbus is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.