{"title":"Adjusting blood redistribution to suppress flow disturbances of hemodialysis arteriovenous fistula: a computational fluid dynamics analysis.","authors":"Yong-Jiang Li, Hui-Min Hou, Zheng Liu, Chun-Dong Xue, Jing-Tong Na, Qing-Mei Meng, Zhe-Yuan Li, Hai-Yang Sun, Yu-Lin Wu, Shu-Xin Liu, Kai-Rong Qin","doi":"10.3389/fbioe.2025.1551993","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The dramatic hemodynamic disturbances induced by arteriovenous fistula (AVF) creation are universally acknowledged as the triggering factors for AVF dysfunction. The postoperative blood redistribution is greatly relevant with the flow disturbances of the AVF, such as disturbed flow, low wall shear stress (WSS), and oscillating WSS. However, the relationship between blood redistribution and hemodynamic disturbances of AVF remains unexamined. The role of clinically observed retrograde blood flow at the distal radial artery is rarely understood.</p><p><strong>Methods: </strong>In this study, an idealized AVF model was developed with clinical data collected from end-stage renal disease patients. By considering the postoperative blood redistribution, the influence of the blood flow rate ratio on hemodynamic disturbances is numerically studied.</p><p><strong>Results and discussion: </strong>The results demonstrate that the creation of the AVF can result in flow disturbances such as vortex, reciprocating flow, and low and reciprocating WSS, whose occurrence regions are consistent with clinical observations. The flow rate ratio and flow direction of the distal radial artery play important roles in regulating the low-WSS area within the AVF anastomosis, especially for the flow rate of the proximal radial artery (PRA). Moreover, the clinically observed retrograde blood flow in the distal radial artery contributes to the reduction in the low-WSS area, revealing a compensatory mechanism. This study can provide valuable insights for understanding the effect of blood redistribution on flow disturbances in the AVF, as well as the compensatory role of the retrograde distal radial artery flow, which helps optimize blood redistribution for a well-functioning AVF.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1551993"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11965668/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1551993","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Adjusting blood redistribution to suppress flow disturbances of hemodialysis arteriovenous fistula: a computational fluid dynamics analysis.
Introduction: The dramatic hemodynamic disturbances induced by arteriovenous fistula (AVF) creation are universally acknowledged as the triggering factors for AVF dysfunction. The postoperative blood redistribution is greatly relevant with the flow disturbances of the AVF, such as disturbed flow, low wall shear stress (WSS), and oscillating WSS. However, the relationship between blood redistribution and hemodynamic disturbances of AVF remains unexamined. The role of clinically observed retrograde blood flow at the distal radial artery is rarely understood.
Methods: In this study, an idealized AVF model was developed with clinical data collected from end-stage renal disease patients. By considering the postoperative blood redistribution, the influence of the blood flow rate ratio on hemodynamic disturbances is numerically studied.
Results and discussion: The results demonstrate that the creation of the AVF can result in flow disturbances such as vortex, reciprocating flow, and low and reciprocating WSS, whose occurrence regions are consistent with clinical observations. The flow rate ratio and flow direction of the distal radial artery play important roles in regulating the low-WSS area within the AVF anastomosis, especially for the flow rate of the proximal radial artery (PRA). Moreover, the clinically observed retrograde blood flow in the distal radial artery contributes to the reduction in the low-WSS area, revealing a compensatory mechanism. This study can provide valuable insights for understanding the effect of blood redistribution on flow disturbances in the AVF, as well as the compensatory role of the retrograde distal radial artery flow, which helps optimize blood redistribution for a well-functioning AVF.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.