跟踪蛋白激酶靶向进展:将QSAR整合到机器学习中用于激酶靶向药物发现。

IF 2.4 Q3 MEDICINE, RESEARCH & EXPERIMENTAL
Future Science OA Pub Date : 2025-12-01 Epub Date: 2025-04-04 DOI:10.1080/20565623.2025.2483631
Rand Shahin, Sawsan Jaafreh, Yusra Azzam
{"title":"跟踪蛋白激酶靶向进展:将QSAR整合到机器学习中用于激酶靶向药物发现。","authors":"Rand Shahin, Sawsan Jaafreh, Yusra Azzam","doi":"10.1080/20565623.2025.2483631","DOIUrl":null,"url":null,"abstract":"<p><p>Protein kinases are vital drug targets, yet designing selective inhibitors is challenging, compounded by resistance and kinome complexity. This review explores Quantitative Structure-Activity Relationship (QSAR) modeling for kinase drug discovery, focusing on integrating traditional QSAR with machine learning (ML)-CNNs, RNNs-and structural data. Methods include structural databases, docking, and deep learning QSAR. Key findings show ML-integrated QSAR significantly improves selective inhibitor design for CDKs, JAKs, PIM kinases. The IDG-DREAM challenge exemplifies ML's potential for accurate kinase-inhibitor interaction prediction, outperforming traditional methods and enabling inhibitors with enhanced selectivity, efficacy, and resistance mitigation. QSAR combined with advanced computation and experimental data accelerates kinase drug discovery, offering transformative precision medicine potential. This review highlights deep learning-enhanced QSAR's novelty in automating feature extraction and capturing complex relationships, surpassing traditional QSAR, while emphasizing interpretability and experimental validation for clinical translation.</p>","PeriodicalId":12568,"journal":{"name":"Future Science OA","volume":"11 1","pages":"2483631"},"PeriodicalIF":2.4000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tracking protein kinase targeting advances: integrating QSAR into machine learning for kinase-targeted drug discovery.\",\"authors\":\"Rand Shahin, Sawsan Jaafreh, Yusra Azzam\",\"doi\":\"10.1080/20565623.2025.2483631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein kinases are vital drug targets, yet designing selective inhibitors is challenging, compounded by resistance and kinome complexity. This review explores Quantitative Structure-Activity Relationship (QSAR) modeling for kinase drug discovery, focusing on integrating traditional QSAR with machine learning (ML)-CNNs, RNNs-and structural data. Methods include structural databases, docking, and deep learning QSAR. Key findings show ML-integrated QSAR significantly improves selective inhibitor design for CDKs, JAKs, PIM kinases. The IDG-DREAM challenge exemplifies ML's potential for accurate kinase-inhibitor interaction prediction, outperforming traditional methods and enabling inhibitors with enhanced selectivity, efficacy, and resistance mitigation. QSAR combined with advanced computation and experimental data accelerates kinase drug discovery, offering transformative precision medicine potential. This review highlights deep learning-enhanced QSAR's novelty in automating feature extraction and capturing complex relationships, surpassing traditional QSAR, while emphasizing interpretability and experimental validation for clinical translation.</p>\",\"PeriodicalId\":12568,\"journal\":{\"name\":\"Future Science OA\",\"volume\":\"11 1\",\"pages\":\"2483631\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Science OA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/20565623.2025.2483631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Science OA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20565623.2025.2483631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

蛋白激酶是重要的药物靶点,但设计选择性抑制剂是具有挑战性的,再加上耐药性和激酶组的复杂性。本文探讨了激酶药物发现的定量结构-活性关系(QSAR)模型,重点是将传统的QSAR与机器学习(ML)- cnn, rnn和结构数据相结合。方法包括结构数据库、对接和深度学习QSAR。主要研究结果显示,ml整合的QSAR显著改善了CDKs、JAKs、PIM激酶的选择性抑制剂设计。IDG-DREAM挑战证明了ML在准确预测激酶抑制剂相互作用方面的潜力,超越了传统方法,并使抑制剂具有更高的选择性、有效性和耐药性缓解。QSAR结合了先进的计算和实验数据,加速了激酶药物的发现,提供了变革性的精准医学潜力。这篇综述强调了深度学习增强的QSAR在自动化特征提取和捕获复杂关系方面的新颖性,超越了传统的QSAR,同时强调了临床翻译的可解释性和实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tracking protein kinase targeting advances: integrating QSAR into machine learning for kinase-targeted drug discovery.

Protein kinases are vital drug targets, yet designing selective inhibitors is challenging, compounded by resistance and kinome complexity. This review explores Quantitative Structure-Activity Relationship (QSAR) modeling for kinase drug discovery, focusing on integrating traditional QSAR with machine learning (ML)-CNNs, RNNs-and structural data. Methods include structural databases, docking, and deep learning QSAR. Key findings show ML-integrated QSAR significantly improves selective inhibitor design for CDKs, JAKs, PIM kinases. The IDG-DREAM challenge exemplifies ML's potential for accurate kinase-inhibitor interaction prediction, outperforming traditional methods and enabling inhibitors with enhanced selectivity, efficacy, and resistance mitigation. QSAR combined with advanced computation and experimental data accelerates kinase drug discovery, offering transformative precision medicine potential. This review highlights deep learning-enhanced QSAR's novelty in automating feature extraction and capturing complex relationships, surpassing traditional QSAR, while emphasizing interpretability and experimental validation for clinical translation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Future Science OA
Future Science OA MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
5.00
自引率
4.00%
发文量
48
审稿时长
13 weeks
期刊介绍: Future Science OA is an online, open access, peer-reviewed title from the Future Science Group. The journal covers research and discussion related to advances in biotechnology, medicine and health. The journal embraces the importance of publishing all good-quality research with the potential to further the progress of research in these fields. All original research articles will be considered that are within the journal''s scope, and have been conducted with scientific rigour and research integrity. The journal also features review articles, editorials and perspectives, providing readers with a leading source of commentary and analysis. Submissions of the following article types will be considered: -Research articles -Preliminary communications -Short communications -Methodologies -Trial design articles -Trial results (including early-phase and negative studies) -Reviews -Perspectives -Commentaries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信