Stefanie D Pritzl, Johannes Morstein, Nikolaj A Pritzl, Jan Lipfert, Theobald Lohmüller, Dirk H Trauner
{"title":"光开关磷脂用于膜过程、蛋白质功能和药物传递的光学控制。","authors":"Stefanie D Pritzl, Johannes Morstein, Nikolaj A Pritzl, Jan Lipfert, Theobald Lohmüller, Dirk H Trauner","doi":"10.1038/s43246-025-00773-8","DOIUrl":null,"url":null,"abstract":"<p><p>Recent insights into the function and composition of cell membranes have transformed our understanding from primarily viewing these structures as passive barriers to recognizing them as dynamic entities actively involved in many cellular functions. This review highlights advances in the photopharmacology of phospholipids, emphasizing in particular the role of diacylglycerophospholipids and the impact of their polymorphic nature on synthetic and cellular membrane properties and metabolic processes. We explore photoswitchable diacylglycerophospholipids, termed 'photolipids', which permit precise, reversible modifications of membrane properties via light-induced isomerization. The ability to optically switch phospholipid properties has potential applications in controlling membrane dynamics, protein function, and cellular signaling pathways, and offers promising strategies for drug delivery and treatment of diseases. Developments in azobenzene and hemithioindigo based photolipids are discussed, underscoring their utility in biomedical and biomaterial science applications due to their unique photophysical properties.</p>","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":"6 1","pages":"59"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11961368/pdf/","citationCount":"0","resultStr":"{\"title\":\"Photoswitchable phospholipids for the optical control of membrane processes, protein function, and drug delivery.\",\"authors\":\"Stefanie D Pritzl, Johannes Morstein, Nikolaj A Pritzl, Jan Lipfert, Theobald Lohmüller, Dirk H Trauner\",\"doi\":\"10.1038/s43246-025-00773-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent insights into the function and composition of cell membranes have transformed our understanding from primarily viewing these structures as passive barriers to recognizing them as dynamic entities actively involved in many cellular functions. This review highlights advances in the photopharmacology of phospholipids, emphasizing in particular the role of diacylglycerophospholipids and the impact of their polymorphic nature on synthetic and cellular membrane properties and metabolic processes. We explore photoswitchable diacylglycerophospholipids, termed 'photolipids', which permit precise, reversible modifications of membrane properties via light-induced isomerization. The ability to optically switch phospholipid properties has potential applications in controlling membrane dynamics, protein function, and cellular signaling pathways, and offers promising strategies for drug delivery and treatment of diseases. Developments in azobenzene and hemithioindigo based photolipids are discussed, underscoring their utility in biomedical and biomaterial science applications due to their unique photophysical properties.</p>\",\"PeriodicalId\":10589,\"journal\":{\"name\":\"Communications Materials\",\"volume\":\"6 1\",\"pages\":\"59\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11961368/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43246-025-00773-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43246-025-00773-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Photoswitchable phospholipids for the optical control of membrane processes, protein function, and drug delivery.
Recent insights into the function and composition of cell membranes have transformed our understanding from primarily viewing these structures as passive barriers to recognizing them as dynamic entities actively involved in many cellular functions. This review highlights advances in the photopharmacology of phospholipids, emphasizing in particular the role of diacylglycerophospholipids and the impact of their polymorphic nature on synthetic and cellular membrane properties and metabolic processes. We explore photoswitchable diacylglycerophospholipids, termed 'photolipids', which permit precise, reversible modifications of membrane properties via light-induced isomerization. The ability to optically switch phospholipid properties has potential applications in controlling membrane dynamics, protein function, and cellular signaling pathways, and offers promising strategies for drug delivery and treatment of diseases. Developments in azobenzene and hemithioindigo based photolipids are discussed, underscoring their utility in biomedical and biomaterial science applications due to their unique photophysical properties.
期刊介绍:
Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.