Hollie Soppitt, Cillian Meehan, Sarah C Culloty, Sharon A Lynch
{"title":"原生和入侵的非原生海洋无脊椎动物作为病原菌弧菌和ostreid herpesvirus-1µVar载体的作用","authors":"Hollie Soppitt, Cillian Meehan, Sarah C Culloty, Sharon A Lynch","doi":"10.3354/dao03844","DOIUrl":null,"url":null,"abstract":"<p><p>Invasive non-native species (INNS) are expanding their geographic range due to climate change, maritime traffic (primary route) and aquaculture (secondary route), resulting in the potential spread of microbes associated with them. Few studies have investigated the INNS-pathogen phenomenon. In this study, marine invertebrate species (native and INNS) were sampled monthly over 3 mo and screened by PCR for the ostreid herpesvirus-1 microvariant (OsHV-1 μVar) and Vibrio bacteria. Both pathogens are negatively associated with bivalve aquaculture. Sample sites included a shipping port, an oyster farm, a marsh nature reserve and a riverine site. Crustacea, Mollusca, Polychaeta, Tunicata and Porifera were sampled. Vibrio spp. were detected in 54.3% (n = 319/588) across all taxa and sample sites. The first detection of V. salmonicida associated with Atlantic salmon Salmo salar was detected in the INNS beaked barnacle Austrominius modestus. OsHV-1 μVar (7.7%, 45/588) was detected in Crustacea, Mollusca and Polychaeta at non-culture sites and in mussels Mytilus spp. at a much lower temperature (average sea surface temperature, SST, 11.25°C) than previously recorded. The shipping port had the highest Vibrio diversity and OsHV-1 μVar detection. Over half (51.1%) of 'recently dead' shore crabs Carcinus maenas had either pathogen detected compared to 29.4% of living crabs. OsHV-1 μVar detection was significantly higher in dead crabs (24.4%) compared to living crabs (5.9%). Findings from this study contribute a better understanding of the role of estuarine native and INNS as vectors/carriers of pathogens and of how the spread of INNS might facilitate the spread of pathogens.</p>","PeriodicalId":11252,"journal":{"name":"Diseases of aquatic organisms","volume":"162 ","pages":"1-15"},"PeriodicalIF":1.1000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of native and invasive non-native marine invertebrate species as carriers for pathogens Vibrio spp. and ostreid herpesvirus-1 µVar.\",\"authors\":\"Hollie Soppitt, Cillian Meehan, Sarah C Culloty, Sharon A Lynch\",\"doi\":\"10.3354/dao03844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Invasive non-native species (INNS) are expanding their geographic range due to climate change, maritime traffic (primary route) and aquaculture (secondary route), resulting in the potential spread of microbes associated with them. Few studies have investigated the INNS-pathogen phenomenon. In this study, marine invertebrate species (native and INNS) were sampled monthly over 3 mo and screened by PCR for the ostreid herpesvirus-1 microvariant (OsHV-1 μVar) and Vibrio bacteria. Both pathogens are negatively associated with bivalve aquaculture. Sample sites included a shipping port, an oyster farm, a marsh nature reserve and a riverine site. Crustacea, Mollusca, Polychaeta, Tunicata and Porifera were sampled. Vibrio spp. were detected in 54.3% (n = 319/588) across all taxa and sample sites. The first detection of V. salmonicida associated with Atlantic salmon Salmo salar was detected in the INNS beaked barnacle Austrominius modestus. OsHV-1 μVar (7.7%, 45/588) was detected in Crustacea, Mollusca and Polychaeta at non-culture sites and in mussels Mytilus spp. at a much lower temperature (average sea surface temperature, SST, 11.25°C) than previously recorded. The shipping port had the highest Vibrio diversity and OsHV-1 μVar detection. Over half (51.1%) of 'recently dead' shore crabs Carcinus maenas had either pathogen detected compared to 29.4% of living crabs. OsHV-1 μVar detection was significantly higher in dead crabs (24.4%) compared to living crabs (5.9%). Findings from this study contribute a better understanding of the role of estuarine native and INNS as vectors/carriers of pathogens and of how the spread of INNS might facilitate the spread of pathogens.</p>\",\"PeriodicalId\":11252,\"journal\":{\"name\":\"Diseases of aquatic organisms\",\"volume\":\"162 \",\"pages\":\"1-15\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diseases of aquatic organisms\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3354/dao03844\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diseases of aquatic organisms","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3354/dao03844","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FISHERIES","Score":null,"Total":0}
Role of native and invasive non-native marine invertebrate species as carriers for pathogens Vibrio spp. and ostreid herpesvirus-1 µVar.
Invasive non-native species (INNS) are expanding their geographic range due to climate change, maritime traffic (primary route) and aquaculture (secondary route), resulting in the potential spread of microbes associated with them. Few studies have investigated the INNS-pathogen phenomenon. In this study, marine invertebrate species (native and INNS) were sampled monthly over 3 mo and screened by PCR for the ostreid herpesvirus-1 microvariant (OsHV-1 μVar) and Vibrio bacteria. Both pathogens are negatively associated with bivalve aquaculture. Sample sites included a shipping port, an oyster farm, a marsh nature reserve and a riverine site. Crustacea, Mollusca, Polychaeta, Tunicata and Porifera were sampled. Vibrio spp. were detected in 54.3% (n = 319/588) across all taxa and sample sites. The first detection of V. salmonicida associated with Atlantic salmon Salmo salar was detected in the INNS beaked barnacle Austrominius modestus. OsHV-1 μVar (7.7%, 45/588) was detected in Crustacea, Mollusca and Polychaeta at non-culture sites and in mussels Mytilus spp. at a much lower temperature (average sea surface temperature, SST, 11.25°C) than previously recorded. The shipping port had the highest Vibrio diversity and OsHV-1 μVar detection. Over half (51.1%) of 'recently dead' shore crabs Carcinus maenas had either pathogen detected compared to 29.4% of living crabs. OsHV-1 μVar detection was significantly higher in dead crabs (24.4%) compared to living crabs (5.9%). Findings from this study contribute a better understanding of the role of estuarine native and INNS as vectors/carriers of pathogens and of how the spread of INNS might facilitate the spread of pathogens.
期刊介绍:
DAO publishes Research Articles, Reviews, and Notes, as well as Comments/Reply Comments (for details see DAO 48:161), Theme Sections and Opinion Pieces. For details consult the Guidelines for Authors. Papers may cover all forms of life - animals, plants and microorganisms - in marine, limnetic and brackish habitats. DAO''s scope includes any research focusing on diseases in aquatic organisms, specifically:
-Diseases caused by coexisting organisms, e.g. viruses, bacteria, fungi, protistans, metazoans; characterization of pathogens
-Diseases caused by abiotic factors (critical intensities of environmental properties, including pollution)-
Diseases due to internal circumstances (innate, idiopathic, genetic)-
Diseases due to proliferative disorders (neoplasms)-
Disease diagnosis, treatment and prevention-
Molecular aspects of diseases-
Nutritional disorders-
Stress and physical injuries-
Epidemiology/epizootiology-
Parasitology-
Toxicology-
Diseases of aquatic organisms affecting human health and well-being (with the focus on the aquatic organism)-
Diseases as indicators of humanity''s detrimental impact on nature-
Genomics, proteomics and metabolomics of disease-
Immunology and disease prevention-
Animal welfare-
Zoonosis