异丙嗪对金黄色葡萄球菌的影响及其在硅胶导管上形成生物膜的预防作用。

IF 2.6 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Érica Rayanne Mota da Costa, Vitória Pessoa de Farias Cabral, Daniel Sampaio Rodrigues, Thais Lima Ferreira, Maria Janielly Castelo Branco Silveira, Leilson Carvalho de Oliveira, Lívia Gurgel do Amaral Valente Sá, Cecília Rocha da Silva, João Batista de Andrade Neto, Sorele Facundo da Silva, Bruno Coêlho Cavalcanti, Manoel Odorico de Moraes, Hélio Vitoriano Nobre Júnior
{"title":"异丙嗪对金黄色葡萄球菌的影响及其在硅胶导管上形成生物膜的预防作用。","authors":"Érica Rayanne Mota da Costa, Vitória Pessoa de Farias Cabral, Daniel Sampaio Rodrigues, Thais Lima Ferreira, Maria Janielly Castelo Branco Silveira, Leilson Carvalho de Oliveira, Lívia Gurgel do Amaral Valente Sá, Cecília Rocha da Silva, João Batista de Andrade Neto, Sorele Facundo da Silva, Bruno Coêlho Cavalcanti, Manoel Odorico de Moraes, Hélio Vitoriano Nobre Júnior","doi":"10.1080/08927014.2025.2486250","DOIUrl":null,"url":null,"abstract":"<p><p>Urinary infections caused by <i>Staphylococcus aureus</i> are commonly associated with urinary catheterization and often result in severe complications. Given this problem, the objective of the study was to investigate the preventive action of promethazine (PMT) against the formation of methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) biofilms when impregnated in urinary catheters. For this purpose, techniques such as broth microdilution, checkerboard, impregnation on urinary catheter fragments, flow cytometry assays and scanning electron microscopy were employed. PMT exhibited antimicrobial activity with Minimum Inhibitory Concentration (MIC) values ranging from 171 to 256 µg/mL, predominantly additive interaction in combination with oxacillin (OXA) and vancomycin (VAN), and a reduction in cell viability of biofilms formed and forming by methicillin-sensitive and -resistant <i>S. aureus</i>. Morphological alterations, damage to the membrane, and genetic material of cells treated with promethazine were also observed. The results demonstrated that PMT can be classified as a promising antimicrobial agent for use in the antibacterial coating of long-term urinary devices.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"1-18"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of promethazine against <i>Staphylococcus aureus</i> and its preventive action in the formation of biofilms on silicone catheters.\",\"authors\":\"Érica Rayanne Mota da Costa, Vitória Pessoa de Farias Cabral, Daniel Sampaio Rodrigues, Thais Lima Ferreira, Maria Janielly Castelo Branco Silveira, Leilson Carvalho de Oliveira, Lívia Gurgel do Amaral Valente Sá, Cecília Rocha da Silva, João Batista de Andrade Neto, Sorele Facundo da Silva, Bruno Coêlho Cavalcanti, Manoel Odorico de Moraes, Hélio Vitoriano Nobre Júnior\",\"doi\":\"10.1080/08927014.2025.2486250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Urinary infections caused by <i>Staphylococcus aureus</i> are commonly associated with urinary catheterization and often result in severe complications. Given this problem, the objective of the study was to investigate the preventive action of promethazine (PMT) against the formation of methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) biofilms when impregnated in urinary catheters. For this purpose, techniques such as broth microdilution, checkerboard, impregnation on urinary catheter fragments, flow cytometry assays and scanning electron microscopy were employed. PMT exhibited antimicrobial activity with Minimum Inhibitory Concentration (MIC) values ranging from 171 to 256 µg/mL, predominantly additive interaction in combination with oxacillin (OXA) and vancomycin (VAN), and a reduction in cell viability of biofilms formed and forming by methicillin-sensitive and -resistant <i>S. aureus</i>. Morphological alterations, damage to the membrane, and genetic material of cells treated with promethazine were also observed. The results demonstrated that PMT can be classified as a promising antimicrobial agent for use in the antibacterial coating of long-term urinary devices.</p>\",\"PeriodicalId\":8898,\"journal\":{\"name\":\"Biofouling\",\"volume\":\" \",\"pages\":\"1-18\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofouling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/08927014.2025.2486250\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2025.2486250","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

金黄色葡萄球菌引起的尿路感染通常与导尿术有关,并常导致严重的并发症。鉴于这一问题,本研究的目的是探讨异丙嗪(PMT)在尿管内浸渍时对耐甲氧西林金黄色葡萄球菌(MRSA)生物膜形成的预防作用。为此,采用了微量肉汤稀释、棋盘格法、浸渍尿导管碎片、流式细胞术和扫描电镜等技术。PMT具有最低抑菌浓度(MIC)为171 ~ 256µg/mL的抗菌活性,主要与oxacillin (OXA)和万古霉素(VAN)联合作用,并降低甲氧西林敏感和耐药金黄色葡萄球菌形成和形成的生物膜的细胞活力。异丙嗪处理后细胞的形态改变、膜损伤和遗传物质也被观察到。结果表明,PMT是一种很有前途的抗菌药物,可用于长期泌尿装置的抗菌涂层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of promethazine against Staphylococcus aureus and its preventive action in the formation of biofilms on silicone catheters.

Urinary infections caused by Staphylococcus aureus are commonly associated with urinary catheterization and often result in severe complications. Given this problem, the objective of the study was to investigate the preventive action of promethazine (PMT) against the formation of methicillin-resistant Staphylococcus aureus (MRSA) biofilms when impregnated in urinary catheters. For this purpose, techniques such as broth microdilution, checkerboard, impregnation on urinary catheter fragments, flow cytometry assays and scanning electron microscopy were employed. PMT exhibited antimicrobial activity with Minimum Inhibitory Concentration (MIC) values ranging from 171 to 256 µg/mL, predominantly additive interaction in combination with oxacillin (OXA) and vancomycin (VAN), and a reduction in cell viability of biofilms formed and forming by methicillin-sensitive and -resistant S. aureus. Morphological alterations, damage to the membrane, and genetic material of cells treated with promethazine were also observed. The results demonstrated that PMT can be classified as a promising antimicrobial agent for use in the antibacterial coating of long-term urinary devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biofouling
Biofouling 生物-海洋与淡水生物学
CiteScore
5.00
自引率
7.40%
发文量
57
审稿时长
1.7 months
期刊介绍: Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion. Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context. Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信